首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
S.A. Haider 《Icarus》2005,177(1):196-216
In this paper we have studied the chemistry of C, H, N, O, and S compounds corresponding to ions of masses ?40 amu in the inner coma of the Comet 1P/Halley. The production rates, loss rates, and ion mass densities are calculated using the Analytical Yield Spectrum approach and solving coupled continuity equation controlled by the steady state photochemical equilibrium condition. The primary ionization sources in the model are solar EUV photons, photoelectrons, and auroral electrons of the solar wind origin. The chemical model couples ion-neutral, electron-neutral, photon-neutral and electron-ion reactions among ions, neutrals, electrons, and photons through over 600 chemical reactions. Of the 46 ions considered in the model the chemistry of 24 important ions (viz., CH3OH+2, H3CO+, NH+4, H3S+, H2CN+, H2O+, NH+3, CO+, C3H+3, OH+, H3O+, CH3OH+, C3H+4, C2H+2, C2H+, HCO+, S+, CH+3, H2S+, O+, C+, CH+4, C+2, and O+2) are discussed in this paper. At radial distances <1000 km, the electron density is mainly controlled by 6 ions, viz., NH+4, H3O+, CH3OH+2, H3S+, H2CN+, and H2O+, in the decreasing order of their relative contribution. However, at distances >1000 km, the 6 major ions are H3O+, CH3OH+2, H2O+, H3CO+, C2H+2, and NH+4; along with ions CO+, OH+, and HCO+, whose importance increases with further increase in the radial distance. It is found that at radial distances greater than ∼1000 km (±500 km) the major chemical processes that govern the production and loss of several of the important ions in the inner coma are different from those that dominate at distances below this value. The importance of photoelectron impact ionization, and the relative contributions of solar EUV, and auroral and photoelectron ionization sources in the inner coma are clearly revealed by the present study. The calculated ion mass densities are compared with the Giotto Ion Mass Spectrometer (IMS) and Neutral Mass Spectrometer (NMS) data at radial distances 1500, 3500, and 6000 km. There is a reasonable agreement between the model calculation and the Giotto measurements. The nine major peaks in the IMS spectra between masses 10 and 40 amu are reproduced fairly well by the model within a factor of two inside the ionopause. We have presented simple formulae for calculating densities of the nine major ions, which contribute to the nine major peaks in the IMS spectra, throughout the inner coma that will be useful in estimating their densities without running the complex chemical models.  相似文献   

2.
We present infrared absorption studies on the effects of 50-100 keV Ar+ and 100 keV H+ ion irradiation of water ice films at 20-120 K. The results support the view that energetic ions can produce hydrogen peroxide on the surface of icy satellites and rings in the outer Solar System, and on ice mantles on interstellar grains. The ion energies are characteristic of magnetospheric ions at Jupiter, and therefore the results support the idea that radiolysis by ion impact is the source of the H2O2 detected on Europa by the Galileo infrared spectrometer. We found that Ar+ ions, used to mimic S+ impacts, are roughly as efficient as H+ ions in producing H2O2, and that 100 keV H+ ions can produce hydrogen peroxide at 120 K. The synthesized hydrogen peroxide remained stable while warming the ice film after irradiation; the column density of the formed H2O2 is constant until the ice film begins to desorb, but the concentration of H2O2 increases with time during desorption because the water sublimes at a faster rate. Comparing the shape of the 3.5-μm absorption feature of H2O2 to the one measured on Europa shows excellent agreement in both shape and position, further indicating that the H2O2 detected on Europa is likely caused by radiolysis of water ice.  相似文献   

3.
The production rate of H2O molecules at a heliocentric distance of 1 AU for comet Halley and the abundance ratio with respect to water (H2O) of parent molecules at the cometary nucleus from the paper of Yamamoto (1987) have been used to compute the number densities of positive ions viz. H3O+, H3S+, H2CN+, H3CO+, CH3OH 2 + and NH 4 + at various cometocentric distances within 600 kms from the nucleus.The role of proton transfer reactions in producing major ionic species is discussed. A major finding of the present investigation is that NH 4 + ion which may be produced through proton transfer reactions is the most abundant ion near the nucleus of a comet unless the abundance of NH3 as a parent is abnormally low. Using the quoted value of Q(NH3)/Q(H2O) for comet Halley and the life times of NH3 and H2O molecules, the abundance ratio N(NH3)/N(H2O) is found to be one-third of that used in the present paper. The consequent proportionate decrease in the NH 4 + ions does not, however, affect its superiority in number density over other ions near the nucleus.The number density of the next most abundant ion viz. H3O+ is found to be 4 × 104 cm-3 at the nucleus of comet Halley and decreases by a factor of two only upto a distance of 600 K ms from the nucleus. The ionic mass peak recorded by VEGA and GIOTTO spacecrafts atm/q = 18 is most probably composite of the minor ionic species H2O+, as its number density = 102 cm-3 remains virtually constant in the inner coma and of NH 4 + , the number density of which at large cometocentric distances may add to the recorded peak atmlq = 18. The number densities of other major ions produced through proton transfer from H3O+ are also discussed in the region within 600 K ms from the nucleus of comet Halley.  相似文献   

4.
Lis  D. C.  Mehringer  D. M.  Benford  D.  Gardner  M.  Phillips  T. G.  Bockelée-Morvan  D.  Biver  N.  Colom  P.  Crovisier  J.  Despois  D.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):13-20
We present millimeter-wave observations of HNCO, HC3N, SO, NH2CHO, H13CN, and H3O+ in comet C/1995 O1 (Hale-Bopp)obtained in February–April, 1997 with the Caltech Submillimeter Observatory (CSO). HNCO, first detected at the CSO in comet C/1996B2 (Hyakutake), is securely confirmed in comet Hale-Bopp via observations of three rotational transitions. The derived abundance with respect to H2O is (4-13) × 10-4. HC3N, SO, and NH2CHO are detected for the first time in a comet. The fractional abundance of HC3N based on observations of three rotational lines is (1.9 ± 0.2) × 10-4. Four transitions of SO are detected and the derived fractional abundance, (2-8) ×10-3, is higher than the upper limits derived from UV observations of previous comets. Observations of NH2CHO imply a fractional abundance of (1-8) × 10-4. H3O is detected for the first time from the ground. The H13CN (3-2)transition is also detected and the derived HCN/H13CN abundance ratio is 90 ± 15, consistent with the terrestrial12C/13C ratio. In addition, a number of other molecular species are detected, including HNC, OCS, HCO+, CO+, and CN(the last two are first detections in a comet at radio wavelengths). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
We present near-IR (2.2-2.4 μm) reflectance and transmittance spectra of frozen (16 and 77 K) methanol (CH3OH) and water-methanol (1:1) mixtures before and after irradiation with 30 keV He+ and 200 keV H+ ions. Spectra of other simple hydrocarbons (CH4, C2H2, C2H4, C2H6) and CO have also been obtained both to help in the identification of the new molecules formed after ion irradiation of methanol-rich ices, and to get insight into the question of the presence of simple frozen hydrocarbons on the surface of some objects in the outer Solar System. The results confirm what obtained by studies performed in different spectral ranges, namely the ion-induced formation of CO and CH4, and, for the first time, evidence a strong decrease of the intensity of the methanol band at about 2.34 μm in comparison with that at 2.27 μm. The results are discussed in view of their relevance for icy objects in the Solar System (namely comets, Centaurs, and Kuiper belt objects) where CH3OH has been observed or suggested to be present.  相似文献   

6.
Measured rates are presented for the reaction of He+ ions with H2 (and D2) molecules to form H+, H2+, and HeH+ ions, as well as for the subsequent reactions of H+ and HeH+ ions with H2 to form H3+. The neutralization of H3+ (and H5+) ions by dissociative recombination with electrons is shown to be fast. The reaction He+ + H2 is slow (k = 1.1 × 10?13 cm3/sec at300°K) and produces principally H+ by the dissociative charge transfer branch. It is concluded that there may be a serious bottleneck in the conversion of two of the primary ions of the upper Jovian ionosphere, H+ and He+ (which recombine slowly), to the rapidly recombining H3+ ion (α[H3+]?3.4 × 10?7 cm3/sec at 150°K).  相似文献   

7.
In order to understand the cometary plasma environment it is important to track the closely linked chemical reactions that dominate ion evolution. We used a coupled MHD ion-chemistry model to analyze previously unpublished Giotto High Intensity Ion Mass Spectrometer (HIS-IMS) data. In this way we study the major species, but we also try to match some minor species like the CHx and the NHx groups. Crucial for this match is the model used for the electrons since they are important for ion-electron recombination. To further improve our results we included an enhanced density of supersonic electrons in the ion pile-up region which increases the local electron impact ionization. In this paper we discuss the results for the following important ions: C+, CH+, CH+2, CH+3, N+, NH+, NH+2, NH+3, NH+4, O+, OH+, H2O+, H3O+, CO+, HCO+, H3CO+, and CH3OH+2. We also address the inner shock which is very distinctive in our MHD model as well as in the IMS data. It is located just inside the contact surface at approximately 4550 km. Comparisons of the ion bulk flow directions and velocities from our MHD model with the data measured by the HIS-IMS give indication for a solar wind magnetic field direction different from the standard Parker angle at Halley's position. Our ion-chemical network model results are in a good agreement with the experimental data. In order to achieve the presented results we included an additional short lived inner source for the C+, CH+, and CH+2 ions. Furthermore we performed our simulations with two different production rates to better match the measurements which is an indication for a change and/or an asymmetric pattern (e.g. jets) in the production rate during Giotto's fly-by at Halley's comet.  相似文献   

8.
9.
A time-dependent one-dimensional model of Saturn's ionosphere has been developed as an intermediate step towards a fully coupled Saturn Thermosphere-Ionosphere Model (STIM). A global circulation model (GCM) of the thermosphere provides the latitude and local time dependent neutral atmosphere, from which a globally varying ionosphere is calculated. Four ion species are used (H+, H+2, H+3, and He+) with current cross-sections and reaction rates, and the SOLAR2000 model for the Sun's irradiance. Occultation data from the Voyager photopolarimeter system (PPS) are adapted to model the radial profile of the ultraviolet (UV) optical depth of the rings. Diurnal electron density peak values and heights are generated for all latitudes and two seasons under solar minimum and solar maximum conditions, both with and without shadowing from the rings. Saturn's lower ionosphere is shown to be in photochemical equilibrium, whereas diffusive processes are important in the topside. In agreement with previous 1-D models, the ionosphere is dominated by H+ and H+3, with a peak electron density of ∼104 electrons cm−3. At low- and mid-latitudes, H+ is the dominant ion, and the electron density exhibits a diurnal maximum during the mid-afternoon. At higher latitudes and shadowed latitudes (smaller ionizing fluxes), the diurnal maximum retreats towards noon, and the ratio of [H+]/[H+3] decreases, with H+3 becoming the dominant ion at altitudes near the peak (∼1200-1600 km) for noon-time hours. Shadowing from the rings leads to attenuation of solar flux, the magnitude and latitudinal structure of which is seasonal. During solstice, the season for the Cassini spacecraft's encounter with Saturn, attenuation has a maximum of two orders of magnitude, causing a reduction in modeled peak electron densities and total electron column contents by as much as a factor of three. Calculations are performed that explore the parameter space for charge-exchange reactions of H+ with vibrationally excited H2, and for different influxes of H2O, resulting in a maximum diurnal variation in electron density much weaker than the diurnal variations inferred from Voyager's Saturn Electrostatic Discharge (SED) measurements. Peak values of height-integrated Pedersen conductivities at high latitudes during solar maximum are modeled to be ∼42 mho in the summer hemisphere during solstice and ∼18 mho during equinox, indicating that even without ionization produced by auroral processes, magnetosphere-ionosphere coupling can be highly variable.  相似文献   

10.
We report on spectro-imaging infrared observations of Jupiter's auroral zones, acquired in October 1999 and October 2000 with the FTS/BEAR instrument at the Canada-France-Hawaii Telescope. The use of narrow-band filters at 2.09 and 2.12 μm, combined with high spectral resolution (0.2 cm−1), allowed us to map emission from the H2S1(1) quadrupole line and from several H3+ lines. The H2 and H3+ emission appears to be morphologically different, especially in the north, where the latter notably exhibits a “hot spot” near 150°-170° System III longitude. This hot spot coincides in position with the region of increased and variable hydrocarbon, FUV and X-ray emission, but is not seen in the more uniform H2S1(1) emission. We also present the first images of the H2 emission in the southern polar region. The spectra include a total of 14 H3+ lines, including two hot lines from the 3ν2-ν2 band, detected on Jupiter for the first time. They can be used to determine H3+ column densities, rotational (Trot) and vibrational (Tvib) temperatures. We find the mean Tvib of the v2=3 state to be lower (960±50 K) than the mean Trot in v2=2 (1170±75 K), indicating an underpopulation of the v2=3 level with respect to local thermodynamical equilibrium. Rotational temperatures and associated column densities are generally higher and lower, respectively, than inferred previously from ν2 observations. This is a likely consequence of a large positive temperature gradient in the sub-microbar auroral atmosphere. While the signal-to-noise is not sufficient to take full advantage of the 2-D capabilities of the observations, the search for correlations between line intensities, Tvib and column densities, indicates that variations in line intensities are mostly due to correlated variations in the H3+ column densities. The thermostatic role played by H3+ at ionospheric levels may provide an explanation. The exception is the northern “hot spot,” which exhibits a Tvib about 250 K higher than other regions. A partial explanation might invoke a homopause elevation in this region, but a fully consistent scenario is not yet available. The different distributions of the H2 and H3+ emission are equally difficult to explain.  相似文献   

11.
We observed the products C4H5, C4H4, C3H3 and CH3 of the C(3P) + C3H6 reaction using product time-of-flight spectroscopy and selective photoionization. The identified species arise from the product channels C4H5 + H, C4H4 + 2H and C3H3 + CH3. Product isomers were identified via measurements of photoionization spectra and calculations of adiabatic ionization energy. Product C4H5 probably involves three isomers HCCCHCH3, H2CCCCH3 and H2CCCHCH2. In contrast, products C4H4 and C3H3 involve exclusively HCCCHCH2 and H2CCCH, respectively. Reaction mechanisms are unraveled with crossed-beam experiments and quantum-chemical calculations. The 3P carbon atom attacks the π orbital of propene (C3H6) to form a cyclic complex c-H2C(C)CHCH3 that rapidly opens the ring to form H2CCCHCH3 followed by decomposition to HCCCHCH3/H2CCCCH3/H2CCCHCH2 + H and H2CCCH + CH3; the corresponding branching ratios are 7:5:10:78 predicted with RRKM calculations at collision energy 4 kcal mol?1. Nascent C4H5 with enough internal energy further decomposes to HCCCHCH2 + H. Ratios of products C4H5, C4H4 and C3H3 are experimentally evaluated to be 17:8:75. This work provides a comprehensive look at product channels of the title reaction and gives implications for the formation of hydrocarbons in extra-terrestrial environments such as Titan and carbon-rich interstellar media. We suggest that the title reaction, hitherto excluded in any chemical networks, needs to be taken into account at least in the atmosphere of Titan and carbon-rich molecular clouds where rapid neutral–neutral reactions are dominant and carbon atoms and propene are abundant.  相似文献   

12.
The Cassini plasma spectrometer (CAPS) instrument made measurements of Titan's plasma environment when the Cassini Orbiter flew through the moon's plasma wake October 26, 2004 (flyby TA). Initial CAPS ion and electron measurements from this encounter will be compared with measurements made by the Voyager 1 plasma science instrument (PLS). The comparisons will be used to evaluate previous interpretations and predictions of the Titan plasma environment that have been made using PLS measurements. The plasma wake trajectories of flyby TA and Voyager 1 are similar because they occurred when Titan was near Saturn's local noon. These similarities make possible direct, meaningful comparisons between the various plasma wake measurements. They lead to the following: (A) The light and heavy ions, H+and N+/O+, were observed by PLS in Saturn's magnetosphere in the vicinity of Titan while the higher mass resolution of CAPS yielded H+ and H2+as the light constituents and O+/CH4+ as the heavy ions. (B) Finite gyroradius effects were apparent in PLS and CAPS measurements of ambient O+ ions as a result of their absorption by Titan's extended atmosphere. (C) The principal pickup ions inferred from both PLS and CAPS measurements are H+, H2+, N+, CH4+ and N2+. (D) The inference that heavy pickup ions, observed by PLS, were in narrow beam distributions was empirically established by the CAPS measurements. (E) Slowing down of the ambient plasma due to pickup ion mass loading was observed by both instruments on the anti-Saturn side of Titan. (F) Strong mass loading just outside the ionotail by a heavy ion such as N2+ is apparent in PLS and CAPS measurements. (G) Except for the expected differences due to the differing trajectories, the magnitudes and structures of the electron densities and temperatures observed by both instruments are similar. The high-energy electron bite-out observed by PLS in the magnetotail is consistent with that observed by CAPS.  相似文献   

13.
Photoionization of the upper atmosphere of Titan by sunlight is expected to produce a substantial ionospheric layer. We have solved one-dimensional forms of the mass, momentum, and energy conservation equations for ions and electrons and have obtained electron number densities of about 103 cm?3, using various model atmospheres. The significant ions in a CH4H2 atmosphere are H+, H3+, CH5+, CH5+, CH3+, and C2H5+. Electron temperatures may be as high as 1000°K, depending on the abundance of hydrogen in the high atmosphere. Interaction of the solar wind with the ionosphere is also discussed.  相似文献   

14.
The possibility of H3+ playing a role as a sink for noble gases has been investigated in the case of Argon. Elaborate quantum methods (ab initio Coupled Cluster and density functional BH&HLYP levels of theory) have been shown to reproduce the rotational constants within 0.3% together with the only known IR frequency on the test case of Ar…D3+. Dissociation energies of (Ar)n…H3+ as a function of cluster size, i.e. 7.2 (n=1), 3.7 (n=2), 3.6 (n=3), 1.6 (n=4), 1.7 (n=5) kcal/mol, follow the pattern established experimentally for (Ar)n…H3+ and (H2)n…H3+ series. Rotational constants and harmonic frequencies of (Ar)n…H3+ (n=1-3) are presented.  相似文献   

15.
A numerical model is utilized to investigate the temperature (T) and solar zenith angle (χ) control of D-region positive ion chemistry between 75 and 90 km. It is assumed that NO? is the precursor ion in a chain which involves three-body formation of the intermediary cluster ions NO+(H2O)m?1(X) (m = 1–3), where X can be N2,O2, H2O, or CO2, switching reactions which convert these weakly bound clusters to hydrates of NO+ and reaction of the third hydrate of NO+ with H2O to initiate the chain to form H+(H2O)n (n = 1–7). Zonal mean and tidal temperatures from rocket observations and theory are synthesized to obtain the best available estimate of mean latitudinal, seasonal and local time variations of temperature in this height region. Relative compositions of NO+(H2O)m and H+(H2O)n are found to vary widely over the complete range of realistic conditions; however, the relative ion populations are entirely explicable in terms of the effects of χ and T on the relative life-times of the intermediary ion clusters with respect to recombination, switching and thermal decomposition. For instance, as χ increases (and electron production decreases) beyond 60° for a given temperature, the recombination times of the intermediate ion cluster species lengthen with respect to the formation time of the H+ water clusters, causing the relative H+ water cluster population to increase and thus raise the level where the cluster ion and NO+ concentrations are equal from about 85 km (normal midday) to 90 km. For a given χ the concentrations of NO+H2O and H+(H2O)4 increase (decrease) for temperatures less than (greater than) 190 and 205 K, respectively. The transition occurs when the temperature becomes sufficiently high that the lifetimes of intermediary ion clusters with respect to thermal decomposition become less than their lifetimes with respect to H2O switching (which ultimately leads to the third hydrate of NO+ and entry into the water chain). At this point, the formation time of H+(H2O)4 becomes long compared with its lifetime with respect to thermal decomposition and its relative concentration decreases also. Implications of these results with respect to studies of the D-region are discussed.  相似文献   

16.
The 4050 Å band of C3 was observed with Keck/HIRES echelle spectrometer during the Deep Impact encounter. We perform a 2-dimensional analysis of the exposures in order to study the spatial, spectral, and temporal changes in the emission spectrum of C3. The rotational population distribution changes after impact, beginning with an excitation temperature of ~45 K at impact and increasing for 2 hr up to a maximum of 61±5 K. From 2 to 4 hours after impact, the excitation temperature decreases to the pre-impact value. We measured the quiescent production rate of C3 before the encounter to be 1.0×1023 s?1, while 2 hours after impact we recorded a peak production rate of 1.7×1023 s?1. Whereas the excitation temperature returned to the pre-impact value during the observations, the production rate remained elevated, decreasing slowly, until the end of the 4 hr observations. These results are interpreted in terms of changing gas densities in the coma and short-term changes in the primary chemical production mechanism for C3.  相似文献   

17.
Infrared emission lines of stratospheric ammonia (NH3) were observed following the collisions of the fragments of Comet Shoemaker-Levy 9 with Jupiter in July of 1994 at the impact sites of fragments G and K. Infrared heterodyne spectra near 10.7 μm were obtained by A. Betz et al. (in Abstracts for Special Sessions on Comet Shoemaker-Levy 9, The 26th Meeting of the Division for Planetary Sciences, Washington DC, 31 Oct.-4 Nov. 1994, p. 25) using one of the Infrared Spatial Interferometer telescope systems on Mount Wilson. Lineshapes of up to three different NH3 emission lines were measured at a resolving power of ∼107 at multiple times following the impacts. We present here our radiative transfer analysis of the fully resolved spectral lineshapes of the multiple rovibrational lines. This analysis provides information on temperature structure and NH3 abundance distributions and their temporal changes up to 18 days after impact. These results are compared to photochemical models to determine the role of photochemistry and other mechanisms in the destruction and dilution of NH3 in the jovian stratosphere after the SL9 impacts.One day following the G impact, the inferred temperature above 0.001 mbar altitude is 283±13 K, consistent with a recent plume splashback model. Cooling of the upper stratosphere to 204 K by the fourth day and to quiescence after a week is consistent with a simple gray atmosphere radiative flux calculation and mixing with cold jovian air. During the first 4 days after impact, NH3 was present primarily at altitudes above 1 mbar with a column density of (7.7±1.6)×1017 cm−2 after 1 day and (3.7±0.8)×1017 cm−2 after 4 days. (Errors represent precision.) We obtained >2.5 times more NH3 than can be supplied by nitrogen from a large cometary fragment, suggesting a primarily jovian source for the NH3. By 18 days postimpact, a return to quiescent upper stratospheric temperature is retrieved for the G region, with an NH3 column density of 7.3×1017 cm−2 or more in the lower stratosphere, possibly supplied by NH3 upwelling across an impact-heated and turbulent tropopause, which may have been masked by initial dust and haze. Above the 1-mbar level, the maximum retrieved column density decreased to 6.5×1016 cm−2. Comparison to photochemical models indicates that photolysis alone is not sufficient to account for the loss of NH3 above 1 mbar by that time, even when chemical reformation of NH3 is ignored. We speculate that the dispersion of plume material at high altitudes (above 1 mbar) is responsible for the change in the spectra observed a few days postimpact. Data on the K impact region provide qualitatively consistent results.  相似文献   

18.
Following the recent mass spectrometric observations of the ambient stratospheric positive and negative ions we have carried out co-ordinated laboratory experiments using a selected ion flow tube apparatus and a flowing afterglow apparatus for the following purposes: (i) to consider whether CH3CN is a viable candidate molecule for the species X in the observed stratospheric ion series H+ (H2On (X)m and (ii) to determine the binary mutual neutralization rate coefficients αi for the reactions ofH+ (H2O4 and H+(H2O)(CH3CN)3 with several of the negative ion species observed in the stratosphere. We conclude from (i) that CH3CN is indeed a viable candidate for X and from (ii) that the αi for stratospheric ions are within the limited range (5–6) × 10?8 cm3 s?1.  相似文献   

19.
Dirty ice of a second kind (major components, H2O, CO, and N2; minor components less than several percents, NH3, CH4, and other organic substances such as HCN, CH3CN etc.) is assumed for the composition of volatiles in the cometary nucleus. The consistency with the observations of molecular ions and daughter molecules in the cometary atmosphere is argued by taking into account various ion-molecular reactions and dissociative recombinations. There is a satisfactory agreement for the second kind of dirty-ice model, but the presence of large amounts of CH4 and NH3 is found to be rather in contradiction with observational evidence. A velocity of 8 km s?1 for the hydrogen atoms, derived from analysis of the hydrogen Lyman-alpha corona around comets, is found from the dissociative recombination of H3O+, the dominant constituent of cometary ionosphere, in accordance with H3O++e ?→OH+H+H.  相似文献   

20.
S.K. Atreya  T.M. Donahue 《Icarus》1975,25(2):335-338
The role of hydrocarbons as a possible sink for H+ and H3+ ions in the lower ionosphere of the outer planets is examined. Calculations indicate that H+ and H3+ are efficiently converted to hydrocarbon ions on reaction with methane. The terminal ions, CH5+ and C2H5+ are rapidly neutralized in dissociative recombination with electrons. Extreme ultraviolet photolysis of hydrocarbons as a potential additional source of lower elevation ions in investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号