首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
通过1∶5万马兰幅区域地质调查,首次在东泉戈壁地区发现了环斑花岗岩。东泉戈壁环斑花岗岩分布于南天山碰撞带中部,岩体以富含暗色细粒闪长质包体和具有特殊的环斑结构为特征。该花岗岩呈岩株状产出,岩石化学以较高的Al2O3(14.47%~15.44%)、K2O(3.93%~4.7%)和Na2O(3.4%~3.7%),富集轻稀土和大离子亲石元素,具有弱的δEu(平均为0.79)负异常等为特征,表现出与典型的板内奥长环斑花岗岩明显不同的地球化学特征。其形成时代为晚石炭世(305±1Ma),恰好是南天山洋盆向北俯冲碰撞造山末期阶段,据此认为东泉戈壁环斑花岗岩可能是一种造山带型环斑花岗岩,形成于板块碰撞后的抬升环境下的I型花岗岩。  相似文献   

2.
通过秦岭-昆仑造山带中的环斑花岗岩同世界元古宙环斑花岗岩的岩石学、岩相学、岩石地球化学和构造环境等方面的对比研究发现,二者具有相同或一致的特征:具环斑结构,属准铝、高钾、富碱岩浆,具双峰式岩浆组合,形成于后碰撞环境,但其地球化学的某些指标、岩浆形成时代和出露的大地构造位置等有一定差异.世界元古宙环斑花岗岩的岩石化学及暗色矿物明显富铁,w(FeT)/w(FeT Mg)较高,多数在0.9以上,岩石成因类型多数是A型花岗岩,产在稳定地台区的边缘,而昆仑地区多数环斑花岗岩的w(FeT)/w(FeT MgO)>0.8,亦较富Fe,且多数是A型花岗岩;秦岭地区的岩体铁指数相对较低,只有0.62,岩石成因类型的地球化学判据既有A型也有Ⅰ型花岗岩特征.秦岭-昆仑造山带中环斑花岗岩的显著特征是都产在造山带中,与板块缝合带关系密切,时代从元古宙到古生代直到中生代都有发现,具多旋回性.它们出现在每一个大的造山旋回晚期,即向另一个构造旋回的转折期,这在世界造山带中是十分罕见的,反映出世界上造山带与稳定区元古宙和显生宙的地幔与地壳状态是不一样的,有着不同的构造演化历史和动力学过程,表明秦岭-昆仑地区的环斑花岗岩是一种有别于元古宙稳定区的造山型环斑花岗岩.  相似文献   

3.
老君山和秦岭梁岩体产于秦岭造山带商丹缝合带北侧,其岩石普遍发育环斑结构,表现为碱性长石巨晶多为卵球状,有些发育斜长石外壳,有些不发育。这不同于一般花岗岩局部出现的具斜长石外壳自形碱性长石巨晶结构。在地球化学上,该岩石显示I—A型花岗岩过渡特点。区域背景、构造被动定位特点和地球化学综合分析表明,它们可能定位于后碰撞或后造山环境。这些特征与典型的元古代克拉通非造山环境中的环斑花岗岩既有相似之处,也有一定差异,而与巴西造山带中环斑花岗岩较为相似。本文认为,它们不是一般的斑状花岗岩,而是最近注意研究的环斑结构花岗岩,有可能是一种造山带型环斑花岗岩,即产于造山带中的非典型环斑花岗岩。  相似文献   

4.
塔里木西南缘的和田布雅花岗岩,由巨斑二长花岗岩、似环斑状二长花岗岩和细粒钾长花岗岩3种岩石类型组成,其中具似环斑状结构的花岗岩与国内外报道的环斑花岗岩在基本岩相学方面较为相似,可能属于广义的环斑花岗岩系列.根据暗色包体中含有寄主岩石的钾长石斑晶等分析,布雅花岗岩可能是岩浆混合的产物.布雅花岗岩锆石SHRIMPU-Pb定年获得(459±23)Ma年龄值(MSWD=1.3),形成时代为晚奥陶世,这为该区地质构造演化提供了基本年代约束.通过区域资料对比,铁克里克隆起带和田布雅后造山A型花岗岩与西昆仑造山带南部俯冲型花岗岩侵位时代基本一致,暗示原特提斯洋的闭合是由北向南迁移的,当原特提斯洋南部处于俯冲消减时期,北部铁克里克隆起带南部的活动大陆边缘已进入造山后演化阶段,这对于重建西昆仑造山带的构造演化具有重要意义.  相似文献   

5.
秦岭沙河湾造山带型环斑花岗岩地球化学及构造属性讨论   总被引:8,自引:5,他引:3  
对沙河湾岩体的主量元素、微量元素地球化学进行了研究,结果显示沙河湾岩体与附近同一时期的曹坪岩体,及南秦岭花岗岩带的米坝、光头山、张家坝等岩体的地球化学特征很相近.SiO2为64.99%~69.69%,具有高的Al2O3(14.53%~16.2%),富集轻稀土和大离子亲石元素,尤其是沙河湾岩体没有明显Eu的负异常,表现出与典型的板内奥长环斑花岗岩明显不同的微量元素地球化学特点.因此,它可能是一种造山带环斑花岗岩,而不是典型的奥长环斑花岗岩.沙河湾环斑花岗岩的年龄曾被看作秦岭造山带主造山过程结束、后造山陆内演化开始的证据.本文研究结果表明沙河湾岩体与曹坪和其它南秦岭同碰撞型花岗岩形成于相同的地质背景,所以不能以其环斑结构来限制秦岭造山带主造山过程结束时代.该岩体也很可能不是沿商丹断裂带的早期碰撞的产物.  相似文献   

6.
柴达木盆地南缘万宝沟花岗岩体主要由似斑状黑云母石英二长岩、环斑结构黑云母二长花岗岩和中粒黑云母二长花岗岩组成,岩体中发育岩浆暗色包体。环斑结构黑云母二长花岗的锆石SHRIMP U-Pb定年为441±5Ma,表明其形成于晚奥陶世。该花岗岩的SiO2含量变化较大(62.20%~75.32%),高钾(3.58%~5.15%)和碱(K2O+Na2O>7%),A/CNK为0.98~1.09,属弱过铝质高钾钙碱性系列;K2O/Na2O(>1)、FeOT/MgO(3.4~6.5)和Ga/Al(2.3~3.1)比值较高,亏损不相容元素Ba、Sr、Nb、P和Ti,相对富集Ta、Hf和Zr,具有A-型花岗岩的特征。黑云母二长花岗岩的εHf(t)=-1.1~10.5,tDM2=744~1490Ma,变化范围较大,表明其物质来源具有多源性,但以壳源为主。较高的εHf(t)(达10)值和较年轻的tDM2(仅为744Ma)暗示,源区中有年轻组分的参与。结合区域地质特征分析,认为该花岗岩形成于后造山的拉张环境。万宝沟花岗岩在结构和地球化学特征上与典型环斑花岗岩有相似之处也有差异,与秦岭中生代环斑结构花岗岩基本相似,表明中央造山带存在古生代和中生代两期环斑结构花岗岩。这将对中央造山带构造演化的进一步研究具有重要的科学意义。  相似文献   

7.
A型花岗岩的岩石学亚类及其物质来源   总被引:34,自引:1,他引:33  
许保良  李之彤 《地学前缘》1998,5(3):113-124
评述和总结了国内外A型花岗岩的岩石学特征,指出目前被划归为这类的岩石至少包括非造山和造山两种环境的7种类型(或组合),即:①环状杂岩体中的碱性及准碱准铝质岩类;②斜长岩微纹二长岩紫苏花岗岩和钾质(环斑)岩花岗岩类;③层状杂岩体中的酸性岩类;④正长岩花岗岩类;⑤二长正长花岗岩类;⑥碱长碱性花岗岩类;⑦碱钙性花岗岩类。认为这些岩石的差异本质上反映出它们物质来源的多样性,亏损地幔、原始地幔、富集地幔、壳幔和地壳物质是这些岩石的潜在源岩。  相似文献   

8.
答“对秦岭奥长环斑花岗岩质疑”   总被引:8,自引:1,他引:8  
环斑花岗岩是一种特殊结构的花岗岩类,并且多数产在元古宙克拉通中。笔者曾报道了在秦岭造山带中发育有印支期具有环斑结构的花岗质岩石。“对秦岭奥长环斑花岗岩质疑”一文认为它们不是环斑花岗岩,并引用Ramo的图表来说明自己的观点。本文将从以下几方面进行讨论:秦岭环斑花岗岩的研究历史;环斑花岗岩的定义;世界上环斑花岗岩的成因类型;秦岭环斑花岗岩的副矿物及铁镁含量和环斑钾长石特征;秦岭环斑花岗岩与基性岩共存等。本文还论证了秦岭环斑花岗岩不同于元古宙非造山环斑花岗岩,而是一种造山型的环斑花岗岩,其形成于后造山环境,是挤压(造山)向拉张(稳定)转折时期的产物。最后对研究秦岭环斑花岗岩的几个理论问题进行了探讨。  相似文献   

9.
北秦岭老君山环斑花岗岩的成因及大地构造意义   总被引:1,自引:0,他引:1  
老君山环斑花岗岩分布于北秦岭造山带中,是沙河湾、朱厂沟脑、秦岭梁北秦岭环斑花岗岩带的一部分,以特殊的环斑结构,富含基性暗色微粒包体为特征,通过对其地质、岩石、地化资料研究,结合区域大地构造环境,认为老君山环斑花岗岩,具有岩浆混合成因类型,为造山后伸展环境的产物,标志着印支期末秦岭地区俯冲碰撞的板块构造体制已经结束,转入板内构造演化阶段。  相似文献   

10.
中元古代鹰峰岩体的主体是环斑花岗岩,与其共生的岩石有石英闪长岩-奥长花岗岩和辉绿岩。环斑花岗岩高碱(Na2O+K2O=8.49%~9.39%)、富钾(K2O/Na2O=1.12~1.43),铝近饱和,高铁镁比值[(ΣFeO)/MgO=4.91~7.19];富Rb、Ba、Ga、Th、Zr、Nb、Ta,贫Cr、Ni、V;高ΣREE(392.24×10-6~594.76×10-6),稀土元素强分异[(La/Lu)N=12.67~17.09],弱铕负异常(δEu=0.58~0.78),显示碱性花岗岩的特征,与密云环斑花岗岩相似。石英闪长岩-奥长花岗岩具钙碱性系列岩石的特征;与环斑花岗岩相比,其Rb、Ba、Ga、Nb、Ta、Th、Hf、Zr低,而Ni、Cr、V高;ΣREE较低(ΣREE=77.04×10^-6~129.85×10^-6),轻重稀土分异明显,但(La/Lu)N的比值较小(11.62~14.06),铕异常更弱(δEu=0.69~0.93)。辉绿岩具低碱、高ΣFeO的特征,属拉斑玄武质,与洋中脊拉斑玄武岩相比,K2O等不相容元素高,具大陆拉斑玄武质的特征。辉绿岩的ISr(1776Ma)为0.7066,εNd(1776Ma)为+3.6,环斑花岗岩的ISr(1776Ma)为0.7181,εNd(1776Ma)为-5.5,显示辉绿岩起源于年轻的地幔,花岗质岩浆主要源自古老的地壳。综合分析显示,这些侵入岩形成于伸展背景,是北半球中元古代非造山环斑花岗岩的成员之一,在加里东期卷入到柴北缘造山带的古老地壳中。这在世界上提供了一个古老克拉通及环斑花岗岩卷入古生代造山带的一个实例。  相似文献   

11.
小兴安岭东南端晚石炭世大岭环斑花岗岩成因   总被引:3,自引:1,他引:3       下载免费PDF全文
在小兴安岭东南端的鹤岗—伊春市交界处大岭一带的晚石炭世弱片麻状中粒似斑状二长花岗岩中发育环斑结构长石,多以呈自形宽板状或宽板柱状的碱性长石内核和斜长石外薄壳组成,少量为不发育斜长石外壳的卵球状、球状,大小为1.5 ̄3.5cm,其特征与典型的环斑结构在岩相学上是相同的。另外岩体中普遍发育暗色微细粒闪长质包体,与环斑钾长石在时空上紧密相伴;包体具典型的岩浆结构及针状磷灰石,含寄主岩的钾长石、石英巨晶;包体形态多呈浑圆的外形,显示出明显的塑性流变特点,与寄主岩常呈明显的接触关系,有时呈过渡状、雾迷状;以上充分说明了包体为岩浆混合成因(MME)。通过对岩体地质、环斑结构钾长石似斑晶、暗色微细粒闪长质包体等特征及岩体的岩石化学、地球化学研究表明大岭环斑花岗岩岩体为岩浆混合成因,产于造山环境,其形成时代、产出构造背景均不同于典型环斑花岗岩。  相似文献   

12.
The Ghansura Rhyolite Dome of the Bathani volcano-sedimentary sequence in eastern India originated from a subvolcanic felsic magma chamber that was intruded by volatile-rich basaltic magma during its evolution leading to the formation of a porphyritic andesite. The porphyritic andesite consists of rapakivi feldspars, which are characterized by phenocrysts of alkali feldspar mantled by plagioclase rims. Results presented in this work suggest that intimate mixing of the mafic and felsic magmas produced a homogeneous hybrid magma of intermediate composition. The mixing of the hot volatile-rich mafic magma with the relatively colder felsic magma halted undercooling in the subvolcanic felsic system and produced a hybrid magma rich in volatiles. Under such conditions, selective crystals in the hybrid magma underwent textural coarsening or Ostwald ripening. Rapid crystallization of anhydrous phases, like feldspars, increased the melt water content in the hybrid magma. Eventually, volatile saturation in the hybrid magma was reached that led to the sudden release of volatiles. The sudden release of volatiles or devolatilization event led to resorption of alkali feldspar phenocrysts and stabilizing plagioclase, some of which precipitated around the resorbed phenocrysts to produce rapakivi feldspars.  相似文献   

13.
Axel Müller 《Geology Today》2007,23(3):114-120
Rapakivi granites, especially the famous rapakivis from southern Finland, are some of the most attractive building and decorative stones, used world-wide because of their striking textures and beautiful colours. But rapakivi granites are more than just building material, they have also been studied scientifically for over 100 years to try to explain the formation of their plagioclase-mantled alkali feldspar ovoids, the rapakivi feldspars which are responsible for the unique texture of the rock. Despite all the work which has been done on them, the formation of this distinctive texture is still not fully understood. Rapakivi granite complexes are not just a 'pretty face', they are also associated with important tin deposits in Rondônia and Amazonas in Brazil.  相似文献   

14.
A suite of post-kinematic, 1.88–1.87 Ga, silicic plutons crosscut 1.89–1.88 Ga synkinematic granitoids in the Central Finland Granitoid Complex (CFGC) in south-central Finland. The plutons range from biotite±hornblende quartz monzonite to syenogranite and include pyroxene- and olivine-bearing varieties. Mineral chemical data on feldspars, biotite, amphibole, pyroxenes, olivine, and oxides of the post-kinematic plutons are presented. The data are interpreted to show that these plutons register (1) a considerable range in pressure from 2–4 kbar (amphibole barometry) to 5–7 kbar (olivine–pyroxene barometry), (2) temperatures mostly reflecting resetting during cooling (450–800°C; QUIlF thermometry), and (3) low fO2 (log fO2 ΔFMQ −0.3 to −1.5; QUIlF equilibria). In particular, plutons with olivine- and pyroxene-bearing margins and amphibole-dominated central parts record progressive oxidation and hydration upon cooling, shifting from the QUIlF equilibrium toward KUIlB. The post-kinematic granites can be considered post-collisional in regard to compressional events in the CFGC and display many of the characteristics of the anorogenic 1.6 Ga rapakivi granites further south. They were presumably derived from a deep and dry crustal source, like the rapakivi granites.  相似文献   

15.
王超  刘良  张安达  杨文强  曹玉亭 《岩石学报》2008,24(12):2809-2819
阿尔金造山带南缘玉苏普阿勒克塔格岩体中的似斑状中粗粒黑云钾长花岗岩发育有岩浆成因的暗色包体,并且该花岗岩被花岗细晶岩呈脉状侵入。该岩体含有丰富的岩浆混合作用特征: 如暗色包体中的碱性长石斑晶、针状磷灰石、长石的环斑结构、石英/斜长石主晶和榍石眼斑等。暗色包体、寄主花岗岩和花岗细晶岩代表了岩浆混合演化过程中不同端元比例混合的产物。地球化学特征上,钾长花岗岩和暗色包体的主要氧化物含量在Harker图解中多呈线性变化。暗色包体主要为闪长质,MgO、K2O含量高,为钾玄岩系列,总体上高场强元素不亏损,显示了岩浆混合中的基性端元信息,可能为幔源熔体结晶分异或壳幔物质的混合产物。寄主花岗岩均为准铝质,富碱,为高钾钙碱性系列,亏损Nb、Ta、Sr、P、Ti等高场强元素,高K2O/Na2O,富集高不相容元素,Ga含量高,显示了A型花岗岩的特征,Th/U 和Nb/Ta比值分别介于为6.67~10.96、8.99~11.94,代表了下地壳源区。花岗细晶岩均为钠质、过铝质,TiO2、MgO含量低, Na2O和CaO含量高,具有混合岩浆侵位后分异的特征。岩相学和地球化学特征说明岩浆混合作用对于环斑结构花岗岩的形成起到重要作用。花岗细晶岩中环斑长石的斜长石外环与钾长石内核的厚度比大于钾长花岗岩中的环斑长石,指示混合岩浆在一定的减压条件下更有利于环斑结构的形成。玉苏普阿勒克塔格岩体中的钾玄质暗色包体、高钾钙碱性花岗岩和中钾钙碱性花岗细晶岩代表了岩浆演化不同阶段的产物,反映了一个幔源岩浆和下地壳不断相互作用,引起地壳连续伸展减薄的过程,指示阿尔金南缘在早古生代末期存在造山后伸展背景下的幔源岩浆底侵作用。同一岩体中两种不同时代岩性的环斑结构显示了该岩体形成历史中的一定时空演化关系,代表了伸展过程中不同阶段的产物。  相似文献   

16.
The pressure quench formation of rapakivi texture   总被引:3,自引:0,他引:3  
Chemical and textural data for rapakivi granites are combined with experimentally determined phase equilibria to provide constraints on the growth of mantled feldspars by a pressure quench mechanism. In water saturated melts of granitic composition the mantled texture develops in response to a decrease in pressure of as little as 1–0.5 kbar. In water undersaturated melts a similar mechanism is operable over a wider range of pressures and a restricted range of water contents. Water undersaturated granites containing 6–10 wt % water undergoing a change in pressure from 5–2 kbar will develop mantling as will a more calcic granodiorite containing 1–5wt% water undergoing a pressure change from 10-1 kbar. The mantling process is interpreted as a reflection of the reduction of pressure accompanying the emplacement of a magma.  相似文献   

17.
The development of rapakivi texture in feldspars from the Ketilidian granitoids of south Greenland has been investigated using Sr, O and H isotopes. A low temperature signature is found in the Sr and O data which seemingly contradicts some textural features that point to a magmatic origin of the plagioclase mantles around the K-feldspar ovoids. An origin for these mantles involving exsolution from an original alkali feldspar solid solution is proposed, which involves growth of mantles over a range of conditions determined by the mobility of the exsolving sodic feldspar. This mobility may be enhanced at high temperatures in the presence of melts or increased fluid pressures and at lower temperatures by the processes responsible for the transformation of K-feldspar to microcline. Rapakivi granites with both white and dark green feldspar occur in south Greenland but show no major isotopic differences, although the dark alkali feldspars contain significantly more fluid. Equivalent fluids in the white alkali feldspars may have escaped during plagioclase exsolution.  相似文献   

18.
Rapakivi granites characteristic practically of all old platforms are greatly variable in age and irregularly distributed over the globe. Four types of magmatic associations, which include rapakivi granites, are represented by anorthosite-mangerite-charnockite-rapakivi granite, anorthosite-mangerite-rapakivi-peralkaline granite, gabbro-rapakivi granite-foidite, and rapakivi granite-shoshonite rock series. Granitoids of these associations used to be divided into the following three groups: (1) classical rapakivi granites from magmatic associations of the first three types, which correspond to subalkaline high-K and high-Fe reduced A2-type granites exemplifying the plumasitic trend of evolution; (2) peralkaline granites of the second magmatic association representing the highly differentiated A1-type reduced granites of Na-series, which are extremely enriched in incompatible elements and show the agpaitic trend of evolution; and (3) subalkaline oxidized granites of the fourth magmatic association ranging in composition from potassic A2-type granites to S-granites. Magmatic complexes including rapakivi granites originated during the geochronological interval that spanned three supercontinental cycles 2.7?1.8, 1.8?1.0 and 1.0?0.55 Ga ago. The onset and end of each cycle constrained the assembly periods of supercontinents and the formation epochs of predominantly anorthosite-charnockite complexes of the anorthosite-mangerite-charnockite-rapakivi granite magmatic association. Peak of the respective magmatism at the time of Grenvillian Orogeny signified the transition from the tectonics of small lithospheric plates to the subsequent plate tectonics of the current type. The outburst of rapakivi granite magmatism was typical of the second cycle exclusively. The anorthosite-mangerite-charnockite-rapakivi granite magmatic series associated with this magmatism originated in back-arc settings, if we consider the latter in a broad sense as corresponding to the rear parts of peripheral orogens whose evolution lasted from ~1.9 to 1.0 Ga. Magmatism of this kind was most active 1.8?1.3 Ga ago and represented the distal effect of subduction or collisional events along the convergent boundaries of lithospheric plates. An important factor that favored the emplacement of rapakivi granites and anorthosites in a huge volume was the thermal and rheologic state of the lithosphere inherited from antedating orogenic events, first of all from the event ~1.9 Ga ago, which was unique in terms of heat capacity transferred into the lithosphere. Anorthosite-mangerite-rapakivi granite-peralkaline granite magmatism is connected with activity of the mantle plums only. Degradation of the rapakivi granite magmatism toward the terminal Proterozoic was controlled by the general cooling of the Earth in the course of the steady dissipation of its endogenic energy, as these processes became accelerated since the Late Riphean  相似文献   

19.
Summary ?Many granitoid intrusions display textural evidence for the interaction of mafic and silicic magmas during their genesis. The ∼ 400 Ma Galway Granite exhibits excellent evidence for magma mixing and mingling both at outcrop/map scale (magma mingling and mixing zones), and at thin-section/crystal scale (mixing textures). These textures – quartz ocelli, rapakivi feldspars, acicular and mixed apatite morphologies, inclusion zones in feldspars, anorthite ‘spikes’ in plagioclase, sphene ocelli, K-feldspar megacrysts in mafic microgranular enclaves (MME), and mafic clots – constitute a textural assemblage whose origin can be explained in terms of magma mixing and mingling models. Furthermore, textures from this assemblage have been recorded throughout the Galway batholith indicating that magma mingling and mixing played a key role during its evolution. Received November 18, 2000; revised version accepted November 6, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号