首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.  相似文献   

2.
Introduction The study on deep crustal faults has been one of the most vigorous subjects in seismology. In the past, 3-D deep seismic sounding and 3-D seismic tomography were usually used for this pur-pose. But it is difficult to obtain the fine structures of the faults in deep crust by these methods. Recently, seismologists in the world pay more attention to the fault zone trapped waves. Since the fault-zone trapped waves arise from coherent multiple reflections at two boundaries of the fau…  相似文献   

3.
利用断层围陷波研究昆仑山口西8.1级地震破裂面   总被引:11,自引:0,他引:11       下载免费PDF全文
利用横跨地表破裂带的小点距的地震测线, 对2001年11月14日昆仑山口西8.1级地震进行了断层围陷波的观测实验. 经过数字滤波和频谱分析等技术, 由地震记录图中分离出了断层围陷波. 资料处理结果表明: ① 无论是人工地震震源还是天然地震震源, 只要位于断层带内或紧靠断层带, 均能激发断层围陷波; ② 断层围陷波的能量主要集中于断层带内, 其振幅随测点与断层带距离的增加而急剧衰减; ③ 断层围陷波的优势频率与断层的宽度及断层带内介质的速度有关, 断层带越宽, 或断层带内部介质速度越低, 则观测到的断层围陷波的优势频率越低; ④ 断层围陷波存在着频散现象; ⑤ 根据昆仑山口西地震测线断层围陷波的观测结果, 可推断该处破裂面宽度为300 m左右, 远远大于地表破裂带的宽度.   相似文献   

4.
昆仑山断裂带围陷波的有限差分数值模拟解释   总被引:2,自引:0,他引:2       下载免费PDF全文
利用交错网格有限差分方法对昆仑山断裂带人工爆破产生的围陷波进行了三维数值模拟解释.为提高断裂带最终模型的可信度,在围陷波模拟的同时考虑了人工爆破记录的三个分量.对昆仑山断裂带围陷波的模拟结果表明,影响围陷波特性的断裂带深度主要在10 km以内.S波速度和断裂带宽度对围陷波的到时、频率、振幅和相位影响较大.数值模拟解释获得的昆仑山断裂带的细结构参数是:浅部断裂带宽度为300 m,深部为250 m;深度在400 m以上断裂带内S波速度为098 km/s,外部围岩S波速度为170 km/s,Q值为138;S波速度和Q值随着深度的增加而增加;1000 m以下断裂带内S波速度为280 km/s,围岩S波速度为33 km/s.  相似文献   

5.
Based on the latest displacement of Huoshan piedmont fault, Mianshan west-side fault and Taigu fault obtained from the beginning of 1990‘s up to the present, the characteristics of distribution and displacement of surface rupture zone of the 1303 Hongtong M = 8 earthquake, Shanxi Province are synthesized and discussed in the paper. If Taigu fault, Mianshan west-side fault and Huoshan piedmont fault were contemporarily active during the 1303 Hongtong M = 8 earthquake, the surface rupture zone would be 160 km long and could be divided into 3 segments, that is, the 50-km-long Huoshan piedmont fault segment, 35-km-long Mianshan west-side fault segment and 70-km-long Taigu fault segment, respectively. Among them, there exist 4 km and 8 km step regions. The surface rupture zone exhibits right-lateral features. The displacements of northern and central segments are respectively 6~7 m and the southern segment has the maximum displacement of 10 m. The single basin-boundary fault of Shanxi fault-depression system usually corresponds to M ≈ 7 earthquake, while this great earthquake (M = 8) broke through the obstacle between two basins. It shows that the surface rupture scale of great earthquake is changeable.  相似文献   

6.
Earthquake surface rupture is the result of transformation from crustal elastic strain accumulation to permanent tectonic deformation. The surface rupture zone produced by the 2001 Kunlunshan earthquake (M w 7.8) on the Kusaihu segment of the Kunlun fault extends over 426 km. It consists of three relatively independent surface rupture sections: the western strike-slip section, the middle transtensional section and the eastern strike-slip section. Hence this implies that the Kunlunshan earthquake is composed of three earthquake rupturing events, i.e. the M w =6.8, M w =6.2 and M w ⩽=7.8 events, respectively. The M w =7.8 earthquake, along the eastern section, is the main shock of the Kunlunshan earthquake, further decomposed into four rupturing subevents. Field measurements indicate that the width of a single surface break on different sections ranges from several meters to 15 m, with a maximum value of less than 30 m. The width of the surface rupture zone that consists of en echelon breaks depends on its geometric structures, especially the stepover width of the secondary surface rupture zones in en echelon, displaying a basic feature of deformation localization. Consistency between the Quaternary geologic slip rate, the GPS-monitored strain rate and the localization of the surface ruptures of the 2001 Kunlunshan earthquake may indicate that the tectonic deformation between the Bayan Har block and Qilian-Qaidam block in the northern Tibetan Plateau is characterized by strike-slip faulting along the limited width of the Kunlun fault, while the blocks themselves on both sides of the Kunlun fault are characterized by block motion. The localization of earthquake surface rupture zone is of great significance to determine the width of the fault-surface-rupture hazard zone, along which direct destruction will be caused by co-seismic surface rupturing along a strike-slip fault, that should be considered before the major engineering project, residental buildings and life line construction. Supported by the National Natural Science Foundation of China (Grant No. 40474037) and the National Basic Research Program of China (Grant No. 2004CB418401)  相似文献   

7.
Based on digital teleseismic P-wave seismograms recorded by 28 long-period seismograph stations of the global seismic network, source process of the November 14, 2001 western Kunlun Mountain M S=8.1 (M W=7.8) earthquake is estimated by a new inversion method. The result shows that the earthquake is a very complex rupture event. The source rupture initiated at the hypocenter (35.95°N, 90.54°E, focal depth 10 km, by USGS NEIC), and propagated to the west at first. Then, in several minutes to a hundred minutes and over a large spatial range, several rupture growth points emerged in succession at the eastern end and in the central part of the finite fault. And then the source rupture propagated from these rupture growth points successively and, finally, stopped in the area within 50 km to the east of the centroid position (35.80°N, 92.91°E, focal depth 15 km, by Harvard CMT). The entire rupture lasted for 142 s, and the source process could be roughly separated into three stages: The first stage started at the 0 s and ended at the 52 s, lasting for 52 s and releasing approximately 24.4% of the total moment; The second stage started at the 55 s and ended at the 113 s, lasting for 58 s and releasing approximately 56.5% of the total moment; The third stage started at the 122 s and ended at the 142 s, lasting for 20 s and releasing approximately 19.1% of the total moment. The length of the ruptured fault plane is about 490 km. The maximum width of the ruptured fault plane is about 45 km. The rupture mainly occurred within 30 km in depth under the surface of the Earth. The average static slip in the underground rocky crust is about 1.2 m with the maximum static slip 3.6 m. The average static stress drop is about 5 MPa with the maximum static stress drop 18 MPa. The maximum static slip and the maximum stress drop occurred in an area within 50 km to the east of the centroid position. Foundation item: Joint Seismological Science Foundation of China (103066) and Foundation of the Seismic Pattern and Digital Seismic Data Application Research Office of Institute of Earthquake Science of the China Earthquake Administration.  相似文献   

8.
In this paper, we briefly describe the principle of tracking energy radiation sources of large earthquakes using fre- quency-domain far-field array technique, present general steps of tracking energy radiation sources, and take the 2001 Kunlun Mountain Pass earthquake as an example to analyze key factors for setting parameters while pro- cessing data. Using broadband waveform data from a seismic array in Ethiopia and Kenya (EK Array), we obtain that the rupture initiation point of the 2001 Kunlun Mountain Pass earthquake is located in the east of Buka Daban Peak (35.92°N, 91.70°E), and the rupture duration time is less than 160 s, the rupture length about 520 km, with 180 km in the west of the initiation point and 340 km in the east, respectively. The western segment of the earth- quake fault bends towards southwest near Buka Daban Peak, which is in concordance with the surface rupture trace. The eastern segment apparently bends towards northeast near Xidatan, which is in agreement with the strike of Xidatan fault, but 30 km away from Xidatan fault. In addition, the results imply that the western segment of the earthquake fault appears erect while the eastern segment appears to be gradually dipping southwards.  相似文献   

9.
With co-seismic surface rupture slip displacements provided by the field observation for the 2001 MS8.1 West Kunlun Mountain Pass earthquake, this paper estimates the rupture speed on the main faulting segment with a long straight fault trace on the surface based on a simple slip-weakening rupture model, in which the frictional overshoot or undershoot are involved in consideration of energy partition during the earthquake faulting. In contrast to the study of Bouchon and Vallée, in which the rupture propagation along the main fault could exceed the local shear-wave speed, perhaps reach the P-wave speed on a certain section of fault, our results show that, under a slip-weakening assumption combined with a frictional undershoot (partial stress drop model), average rupture speed should be equal to or less than the Rayleigh wave speed with a high seismic radiation efficiency, which is consistent with the result derived by waveform inversion and the result estimated from source stress field. Associated with the surface rupture mechanism, such as partial stress drop (frictional undershoot) associated with the apparent stress, an alternative rupture mechanism based on the slip-weakening model has also been discussed.  相似文献   

10.
昆仑山断层围陷波的分析和研究   总被引:12,自引:2,他引:10       下载免费PDF全文
对2001年昆仑山口西Ms81级地震产生的断层带,布设了沿断层和横跨断层的两条人工地震测线.通过对观测资料的定量分析和处理,求得了昆仑山断层带内部的细结构.分析工作包括从S波震相开始的振幅谱计算、速度频散计算、群速度测量,并用面波频散方法反演S波速度结构,用振幅谱比的方法估计断层带的Q值.野外试验结果表明,S波震相与围陷波组的时间差随炮点与台站之间距离增大而增加,在断层带外的测点上观测到与断层带相关的场地效应.最后得出昆仑山断层带宽度为250m、速度结构为断层内低速的分层结构和Q值为15(断层内)和30(围岩).虽然昆仑山口西地震的震级比美国加州Landers地震的震级(Ms76)大,且地震产生的破裂带长度长得多,但是这两个地震断层带的宽度却相差不大.  相似文献   

11.
2001年昆仑山口西MS8.1地震经历了一个复杂的破裂过程,其破裂长、幅度大、破裂速度多变,成为大陆型地震研究的典型地震。本文融合近场高精度大地测量观测(4幅InSAR影像,34个GPS点位同震位移)和高信噪比远震波形记录,基于有限断层反演理论,联合反演得到该地震同震破裂时空过程的统一模型;同时,基于欧洲区域台网波形数据,利用反投影方法获得高频破裂的时空展布。联合反演结果表明,破裂自西向东传播的过程中走向有所变化,破裂尺度达400km,最大滑移量达8m,地震矩大小为6.1×1020Nm,对应的矩震级MW为7.78。主断层破裂经历了3个阶段,其中,超剪切破裂阶段对应最大位错区域,破裂到达西大滩段与昆仑山口断层交叉处时,破裂速度与尺度迅速下降。反投影结果同样显示破裂的3个阶段空间上对应大地测量反演的3个最大破裂区,最大破裂区的扩展速度达6km/s,但超剪切破裂终止在断层交叉口东部约30km处断层走向发生转变的位置。  相似文献   

12.
The Taigu fault zone is one of the major 12 active boundary faults of the Shanxi fault-depression system, located on the eastern boundary of the Jinzhong basin. As the latest investigation indicated, the fault zone had dislocated gully terrace of the first order, forming fault-scarp in front of the loess mesa. It has been discovered in many places in ground surface and trenches that Holocene deposits were dislocated. The latest activity was the 1303 Hongdong earthquake M=8, the fault appeared as right-lateral strike-slip with normal faulting. During that earthquake, the Taigu fault together with the Mianshan western-side fault on the Lingshi upheaval and the Huoshan pediment fault on the eastern boundary of the Linfen basin was being active, forming a surface rupture belt of 160 km in length. Moreover, the Taigu fault were active in the mid-stage of Holocene and near 7 700 aB.P. From these we learnt that, in Shanxi fault-depression system, the run-through activity of two boundary faults of depression-basins might generate great earthquake with M=8. Foundation item: Chinese Joint Seismological Science Foundation (201017). Contribution No. 2003A004, Institute of Crust Dynamics, China Earthquake Administration.  相似文献   

13.
In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recurrence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and considering different rupture patterns. The result shows that the recurrence probability of M S≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault. Foundation item: Joint Seismological Science Foundation of China (103034) and Major Research “Research on Assessment of Seismic Safety” from China Earthquake Administration during the tenth Five-year Plan.  相似文献   

14.
Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone(LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influence rupture propagation, and hold important information of earthquake physics. A number of geophysical and geodetic methods have been developed to derive high-resolution structure of the LVZ. Here, I review a few recent approaches, including ambient noise cross-correlation on dense across-fault arrays and GPS recordings of fault-zone trapped waves. Despite the past efforts, many questions concerning the LVZ structure remain unclear, such as the depth extent of the LVZ. High-quality data from larger and denser arrays and new seismic imaging technique using larger portion of recorded waveforms, which are currently under active development, may be able to better resolve the LVZ structure. In addition, effects of the alongstrike segmentation and gradational velocity changes across the boundaries between the LVZ and the host rock on rupture propagation should be investigated by conducting comprehensive numerical experiments. Furthermore, high-quality active sources such as recently developed large-volume airgun arrays provide a powerful tool to continuously monitor temporal changes of fault-zone properties, and thus can advance our understanding of fault zone evolution.  相似文献   

15.
We have selected 171 near-field records from 391 aftershock records of the Lulong, Hebei Province, earthquake in October 1982 and relocated the hypocenter of 45 aftershocks using the program Hypoinverse. The distribution of aftershocks reveals a set of earthquake faults: a WNW stretching fault truncates two NNE stretching faults. The two branches of faults show the conjugate structure which is often seen in brittle fracture. The NNE stretching faults are connected together. The Luanhe river valley near Lulong developed to a rudiment rift basin surrounded by a series of faults. The fault of Lulong earthquake is a strike-slip fault with tension component. This fault type matches with the activity of Zhangjiakou-Bohai seismic belt (Zhang-Bo belt) and also shows the action of Zhang-Bo belt as a boundary of two secondary active blocks that truncates the NNE fault. Foundation item: National Natural Science Foundation of China (40234038). Contribution No. 05FE3016, Institute of Geophysics, China Earthquake Administration.  相似文献   

16.
利用汶川地震区不同地段的断层围陷波记录,分析了该地震断层的分段性特征。对断层北东段的关庄测线分析研究结果表明:地壳内破碎带的宽度大约160~180m,地下破碎带的中间与地表破裂的位置对应,并且地下破碎带在断层的两盘边缘较均匀地分布,反映了北东段的断层倾角较陡,近似直立断层。对断层南西段的虹口测线研究结果表明:地壳内破碎带的宽度大约180~200m,地下破碎带主要分布在地表断层陡坎上盘所对应的地壳内,反映了南西段断层倾角比北东段断层倾角小。本文的研究结果可以为汶川8.0级地震的构造背景研究提供依据。  相似文献   

17.
Following the theory and definition of the Corioli force in physics, the Corioli force at the site of the M=8.1 Kunlun Mountain Pass earthquake on November 14, 2001, is examined in this paper on the basis of a statistical research on relationship between the Corioli force effect and the maximum attershock magnitude of 20 earth-quakes with M≥7.5 in Chinese mainland, and then the variation tendency of attershock activity of the M=8.1 earthquake is discussed. The result shows: a) Analyzing the Corioli force effect is an effective method to predict maximum attershock magnitude of large earthquakes in Chinese mainland. For the sinistral slip fault and the reverse fault with its hanging wall moving toward the right side oftbe cross-focus meridian plane, their Corioli force pulls the two fault walls apart, decreasing frictional resistance on fault plane during the fault movement and releasing elastic energy of the mainshock fully, so the maximum magnitude of aftershocks would be low. For the dextral slip fault, its Corioli force presses the two walls against each other and increases the frictional resistance on fault plane, prohibiting energy release of the mainshock, so the maximum magnitude of attershocks would be high.b) The fault of the M--8. l Kunlun Mountain earthquake on Nov. 14, 2001 is essentially a sinistral strike-slip fault,and the Corioli force pulled the two fault walls apart. Magnitude of the induced stress is about 0.06 MPa. Alter a comparison analysis, we suggest that the attershock activity level will not be high in the late period of this earth-quake sequence, and the maximum magnitude of the whole aftershocks sequence is estimated to be about 6.0.  相似文献   

18.
The deep seismic reflection data on profile HY2 are reprocessed by the method of simultaneous inversion of velocity distribution and interface position. By the travel-time inversion with the data of the diving wave Pg and fault plane reflection wave, we determine the geometric form and velocity of Haiyuan fault zone interior and surrounding rock down to 10 km depth. The measured data show that the amplitudes have strong attenuation in the range of stake number 37–39 km, suggesting the fault zone has considerable width in the crustal interior. The results of this paper indicate that to the north of the fault zone the crystalline basement interface upheaves gradually from southwest to northeast and becomes shallow gradually towards northeast, and that to the south of the fault zone, within the basin between Xihua and Nanhua mountains, the folded basement becomes shallow gradually towards southwest. The obliquity of the fault zone is about 70° above the 3 km depth, about 60° in the range of the 3–10 km depths. From the results of this paper and other various citations, we believe that Haiyuan fault zone is in steep state from the Earth’s surface to the depth of 10 km. Foundation item: Joint Seismological Science Foundation of China (201001) and State Key Basic Research Development and Programming Project (95-13-02-02). Contribution No. RCEG200308, Exploration Geophysical Center, China Earthquake Administration.  相似文献   

19.
In the paper, the feature of strong earthquake orderly distribution in time, space and intensity before the Western Kunlun Mountain Pass M=8.1 earthquake is preliminarily studied. The modulation and triggering factors such as the earth rotation, earth tides are analyzed. The results show that: the giant earthquakes with the magnitude more than 8 occurred about every 24 years and the earthquakes with the magnitude more than 7 about every 7 years in Chinese mainland. The Western Kunlun Mountain M=8.1 earthquake exactly occurred at the expected time; The spatial distance show approximately the same distances between each two swarms. The earth rotation, earth tide, sun tide and sun magnetic field have played a role of modulation and triggering in the intensity. At last, the conditions for earthquake generation and occurrence are also discussed. Foundation item: State Key Project of Science and Technology of China (2001BA601B01) and State 863 Plan of China.  相似文献   

20.
Introduction According to the Rapid Earthquake Information Release of CNDSN (Department of Earth- quake Monitoring and Prediction, China Earthquake Administration, 2002), an earthquake with surface wave magnitude MS=8.1 shook west of Kunlun Mountain Pass (KMP) at the juncture of Xinjiang, Qinghai and Xizang on November 14, 2001. This is the largest and the only MS>8.0 earthquake in Chinese mainland over 50 years since the August 15, 1950 MS=8.6 (MW=8.6) Chayuearthquake in Tibeta…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号