首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increase of pile resistance with time is referred to as ‘set-up’. This behaviour of driven piles has been widely discussed in many studies by researchers. Meanwhile, there has been little, if any, information regarding this aspect for drilled shafts. Performing a bearing capacity test for a shaft over time, however, requires higher costs and more complicated rigs compared to a driven pile. A database including results from five Osterberg cell-tested drilled shafts conducted at two different stages is considered, from which the set-up effect is statistically analysed. The reliability-based analysis technique using Monte Carlo simulation (MCS) is used to develop separate resistance factors to account for different degrees of uncertainties associated with the predicted reference resistance and the predicted set-up resistance in the framework of the load and resistance factor design (LRFD) method. By incorporating set-up into design, shaft length or number of shafts can be reduced and economical design of drilled shafts can be achieved.  相似文献   

2.
The load distribution and deformation of rock-socketed drilled shafts subjected to axial loads are evaluated by a load transfer method. The emphasis is on quantifying the effect of coupled soil resistance in rock-socketed drilled shafts using 2D elasto-plastic finite element analysis. Slippage and shear-load transfer behavior at the pile–soil interface are investigated by using a user-subroutine interface model (FRIC). It is shown that the coupled soil resistance acts as pile-toe settlement as the shaft resistance is increased to its ultimate limit state. Based on the results obtained, the coupling effect is closely related to the ratio of the pile diameter to soil modulus (D/Es) and the ratio of total shaft resistance against total applied load (Rs/Q). Through comparison with field case studies, the 2D numerical analysis reasonably estimated load transfer of pile and coupling effect, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.  相似文献   

3.
Osterberg-Cell (O-Cell) tests are widely used to predict the load–settlement behavior of large-diameter drilled shafts socketed in rock. The loading direction of O-Cell tests for shaft resistance is opposite to that of conventional downward load tests, meaning that the equivalent top load–settlement curve determined by the summation of the mobilized shaft resistance and end bearing at the same deflection neglects the pile-toe settlement caused by the load transmitted along the pile shaft. The emphasis is on quantifying the effect of coupled shaft resistance, which is closely related to the ratios of pile diameter to soil modulus (D/Es) and total shaft resistance to total applied load (Rs/Q) in rock-socketed drilled shafts, using the coupled load-transfer method. The proposed analytical method, which takes into account the effect of coupled shaft resistance, was developed using a modified Mindlin’s point load solution. Through comparisons with field case studies, it was found that the proposed method reasonably estimated the load-transfer behavior of piles and coupling effects due to the transfer of shaft shear loading. These results represent a significant improvement in the prediction of load–settlement behaviors of drilled shafts subjected to bi-directional loading from the O-Cell test.  相似文献   

4.
This paper uses an existing reliability-based serviceability limit state (RBSLS) procedure to illustrate some of the critical elements in the calibration of RBSLS models and to serve as guide for future calibration work. The impact of copula model selection and therefore correlation structure of bearing pressure-displacement model parameters on reliability is assessed. Then, a framework for evaluating bearing pressure-displacement normalisation techniques is presented as a revision to the existing RBSLS procedure proposed. The reliability of the revised RBSLS procedure is then evaluated by comparing its accuracy to newly conducted, full-scale loading tests of spread footings on aggregate pier-reinforced ground. It is shown that the new RBSLS procedure produces a more accurate estimate of the actual reliability and validates the proposed framework.  相似文献   

5.
Two‐dimensional slope stability analysis for a slope with a row of drilled shafts needs a mechanism to take into account the three‐dimensional effect of the soil arching due to the spaced drilled shafts on slope. To gain a better understanding of the arching mechanisms in a slope with evenly spaced drilled shafts socketed into a stable stratum (or a rock layer), the three‐dimensional finite element modelling technique was used for a comprehensive parametric study, where the nonlinear and plastic nature of the soil and the elastic behavior of the drilled shafts as well as the interface frictions were modelled. Various factors were varied in the parametric study to include (1) the rigidity of the drilled shafts as influenced by its diameter, modulus of elasticity, and total length; (2) shafts spacing and location on the slope; (3) the material properties of rock and the socket length of shaft; and (4) the soil movement and strength parameters. Evidences of soil arching and reduction in the stresses and displacements through the load transfer mechanisms due to the presence of the drilled shafts were elucidated through the finite element method (FEM) simulation results. Design charts based on regression analysis of FEM simulation results were created to obtain a numerical value of the load transfer factor for the arching mechanism provided by the drilled shafts on the slope. Observations of the arching behavior learned from the FEM simulations provide an insight into the behavior of drilled shafts stabilized slope. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper provides a simplified procedure for reliability-based robust geotechnical design (RGD) using spreadsheet. In the RGD methodology, design robustness is achieved by adjusting “design parameters” without reducing the uncertainties in noise factors. This design approach generally involves a multi-objective optimisation, which is computationally challenging. To improve the efficiency of the RGD methodology, the design robustness is evaluated in terms of sensitivity index and the safety requirement is evaluated using mean value first order second moment (MFOSM). To ease the concern that the reliability index obtained with MFOSM may not be sufficiently accurate, a mapping function that relates MFOSM to a more accurate method such as first order reliability method is introduced. To further improve the efficiency of the proposed simplified RGD method, a new simplified procedure along with a more accurate robustness measure is developed that eliminates the need for multi-objective optimisation. With these modifications, the proposed simplified RGD method can efficiently be implemented in a single Excel spreadsheet. The proposed simplified method, which goes beyond any existing reliability-based RGD methods in terms of ease of use and computational efficiency, is illustrated in this paper with an example of robust design of drilled shaft in clay.  相似文献   

7.
基于Copula函数的基桩荷载-位移双曲线概率分析   总被引:2,自引:0,他引:2  
提出了基于Copula函数的基桩荷载-位移双曲线概率分析方法。首先将基桩标准化荷载-位移双曲线模型不确定性转化为双曲线参数不确定性,然后在Copula理论框架下建立了双曲线参数的联合分布函数。最后以钻孔现浇灌注桩试验数据为例证明了所提方法的有效性,并进行了基桩正常使用极限状态可靠度分析。结果表明:Copula函数是构造基桩标准化荷载-位移双曲线参数联合分布函数一种有效的方法,它能够更加准确地实现基桩荷载-位移双曲线的随机模拟,从而得到更为合理的可靠度结果。钻孔现浇灌注桩双曲线模型中两个参数间具有较强的负相关关系,忽略了这种负相关性将会高估基桩的失效概率。此外,常用的Gaussian Copula函数并不是拟合双曲线模型中两个参数间相关结构最优的Copula函数,采用Gaussian Copula函数将会明显低估基桩的失效概率。  相似文献   

8.
Several theoretical, empirical and semi-empirical methods are available in the literature to predict settlement of drilled shafts in sandy soils. In the Arabian Gulf countries, specifically in the United Arab Emirates, equations and procedure from the rest of the world are being used in analysis and design of drilled shafts without proper validation. It is the aim of this study to assess the applicability and evaluate the accuracy of two well known, and commonly used methods for pile prediction in the United Arab Emirates (UAE), namely Vesic (1977) and Poulos (1979), via comparison with data from field pile load tests conducted on shafts drilled in the region. Some of these tests were conducted for the purpose of this study, while others were made available through the courtesy of International Piling Contractors who are active in the region (e.g. Bauer International and Swiss Borings). Pile load test data were analyzed to back-calculate the model parameters related to settlement under different loading stages. Geological data and soil properties were obtained from studies conducted at the relevant sites. An effort is made to correlate soil properties with the prediction models. Statistical analysis is conducted to assess the accuracy of the results obtained from the two methods at different stages of loading via those obtained from pile load tests. Moreover, a detailed parametric study is conducted to assess the effect of the related parameters on the predicted pile settlement and the estimated settlement at different stages of loading. The study concluded with a recommendation of the most appropriate models and procedures to be followed for predicting the settlement of drilled shafts in the UAE, together with useful charts and correlation relations. Results showed that settlement values predicted by Vesic (1977) and Poulos (1979) overestimates the true values. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
10.
In this paper, a limiting equilibrium based methodology, incorporating the method of slices and arching effects of the drilled shafts, is developed for optimizing the use of multiple rows of drilled shafts. This proposed method is focusing on the number of rows, the location of each row, the dimension and spacing of the drilled shafts. Three design criteria are used for optimization: target global factor of safety, the constructability and service limit. A PC-based program called M-UASLOPE has been coded to allow for handling of complex slope geometry, soil profile, and ground water conditions. A design example is presented to illustrate the application of the M-UASLOPE program in the optimized design of multiple rows of drilled shafts for stabilizing the example slope.  相似文献   

11.
As numerical models are increasingly used as a design tool in geotechnical engineering, it is highly desirable if geotechnical reliability analysis can be conducted based on numeral models. Currently, the practical use of geotechnical reliability analysis-based numerical models is still quite limited. In this study, an easy to access method is derived to conduct geotechnical reliability analysis based on numerical models. To facilitate its application, a procedure is outlined to implement the suggested method such that geotechnical reliability analysis can be automated using existing geotechnical numerical packages. The procedure is illustrated in detail with an example, and the source codes provided can be easily adapted to analyze other similar problems. The method described in this paper is used to study the reliability of a deteriorating reinforced concrete drainage culvert in Shanghai, China. The suggested method provides a convenient means for reliability analysis of complex geotechnical problems.  相似文献   

12.
This study deals with the formulation of an analytical solution for load transfer in drilled shaft and its application. The emphasis is on quantifying the mobilization of side resistances, which are closely related to shear behaviors of the concrete-rock interface. In this modelling, the side resistance is idealized by using elasticity-brittleness-plasticity, and a simple slip-line field is built to identify the critical shear displacement. The closed-form solution of load transfer is obtained by using the proposed shear model. Comparison between predictions and field observations is also made to validate performance of the proposed method.  相似文献   

13.
Spatial probabilistic modeling of slope failure using a combined Geographic Information System (GIS), infinite-slope stability model and Monte Carlo simulation approach is proposed and applied in the landslide-prone area of Sasebo city, southern Japan. A digital elevation model (DEM) for the study area has been created at a scale of 1/2500. Calculated results of slope angle and slope aspect derived from the DEM are discussed. Through the spatial interpolation of the identified stream network, the thickness distribution of the colluvium above Tertiary strata is determined with precision. Finally, by integrating an infinite-slope stability model and Monte Carlo simulation with GIS, and applying spatial processing, a slope failure probability distribution map is obtained for the case of both low and high water levels.  相似文献   

14.
In this paper, a new probabilistic approach has been proposed for dealing with the wide scatter in laboratory values of compressive strength test (uni-axial and tri-axial compressive strength tests) data of rock specimens. This wide scatter is essentially due to randomness in number as well as orientation of micro-cracks. In the proposed methodology, Stanley's approach, which uses Weibull's theory based on the weakest link model, has been modified to analyse the compressive strength test data. Stanley's approach is applicable to poly-axial tensile stress conditions. Design of all underground excavations requires, as input data, uni-axial compressive strength and the strength under poly-axial stress conditions. Data from compressive strength tests have been analysed using Weibull's theory and the proposed approach. Corresponding cumulative distribution functions of the state variable, i.e., the applied stress level, have been obtained and goodness-of-fit tests performed to check the fitness of test data to these statistical distributions. These cumulative distribution functions have been subsequently invoked to correlate the applied stress level at failure and the associated risk of failure. The analysis finds its application in specifying the design strength of rocks or rock masses for a permissible probability of failure.  相似文献   

15.
This paper aims to propose a procedure for modeling the joint probability distribution of bivariate uncertain data with a nonlinear dependence structure. First, the concept of dependence measures is briefly introduced. Then, both the Akaike Information Criterion and the Bayesian Information Criterion are adopted for identifying the best‐fit copula. Thereafter, simulation of copulas and bivariate distributions based on Monte Carlo simulation are presented. Practical application for serviceability limit state reliability analysis of piles is conducted. Finally, four load–test datasets of load–displacement curves of piles are used to illustrate the proposed procedure. The results indicate that the proposed copula‐based procedure can model and simulate the bivariate probability distribution of two curve‐fitting parameters underlying the load–displacement models of piles in a more general way. The simulated load–displacement curves using the proposed procedure are found to be in good agreement with the measured results. In most cases, the Gaussian copula, often adopted out of expedience without proper validation, is not the best‐fit copula for modeling the dependence structure underlying two curve‐fitting parameters. The conditional probability density functions obtained from the Gaussian copula differ considerably from those obtained from the best‐fit copula. The probabilities of failure associated with the Gaussian copula are significantly smaller than the reference solutions, which are very unconservative for pile safety assessment. If the strong negative correlation between the two curve‐fitting parameters is ignored, the scatter in the measured load–displacement curves cannot be simulated properly, and the probabilities of failure will be highly overestimated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
边晓亚  郑俊杰  徐志军 《岩土力学》2014,35(11):3317-3321
考虑承载力计算模型和荷载不确定性,利用可靠度分析方法和概率统计理论,推导出承载能力极限状态(ULS)和正常使用极限状态(SLS)下可靠度指标的计算公式,给出了两种极限状态下可靠度指标间的线性关系式,研究了桩顶容许沉降 随机性对正常使用极限状态可靠度分析结果的影响。研究结果表明,土体类别和桩型对正常使用极限状态模型因子影响很小;正常使用极限状态下基桩可靠度指标随承载力计算模型和荷载不确定性的增大而减小,但减小幅度逐渐降低,且可靠度指标总变化量不大,工程应用中可忽略承载力计算模型和荷载不确定性在可靠度分析中的影响; 随机性对正常使用极限状态可靠性分析结果的影响很大,随 的增加,正常使用极限状态模型因子和可靠度指标逐渐增大,而模型因子变异性逐渐减小,但桩本身性质并没有任何改变,只是所允许的沉降条件不同。研究结果可为规范修订和工程应用提供参考。  相似文献   

17.
18.
The geologic appraisal model that is selected for a petroleum resource assessment depends upon purpose of the assessment, basic geologic assumptions of the area, type of available data, time available before deadlines, available human and financial resources, available computer facilities, and, most importantly, the available quantitative methodology with corresponding computer software and any new quantitative methodology that would have to be developed. Therefore, different resource assessment projects usually require different geologic models. Also, more than one geologic model might be needed in a single project for assessing different regions of the study or for cross-checking resource estimates of the area. Some geologic analyses used in the past for petroleum resource appraisal involved play analysis. The corresponding quantitative methodologies of these analyses usually consisted of Monte Carlo simulation techniques. A probabilistic system of petroleum resource appraisal for play analysis has been designed to meet the following requirements: (1) includes a variety of geologic models, (2) uses an analytic methodology instead of Monte Carlo simulation, (3) possesses the capacity to aggregate estimates from many areas that have been assessed by different geologic models, and (4) runs quickly on a microcomputer. Geologic models consist of four basic types: reservoir engineering, volumetric yield, field size, and direct assessment. Several case histories and present studies by the U.S. Geological Survey are discussed.This paper was presented at Emerging Concepts. MGLIS-87, Redwood City, California, 13–15 April 1987.  相似文献   

19.
李煜舲 《岩土力学》2007,28(Z1):267-272
采用研发的有限单元分析程序,并同时考虑以库仑摩擦界面为组成模式的多段式无厚度界面单元,藉以探讨边坡坡角与坡缘距离对边坡坡顶浅基础极限承载力的影响,并应用于不同几何破坏机制条件,计算边坡基础在凝聚性土体的最小荷载上限值,模拟土体间的滑动破坏趋势与渐进式破坏行为。研究分析内容包含:(1)浅基础位于半无限空间;(2)在不同边坡坡角条件下,浅基础位于坡顶边缘处;(3)在不同边坡坡角条件下,浅基础位于不同坡缘距离等。经由数值计算分析结果显示,坡缘距离值愈小或边坡坡角愈陡峭时,边坡浅基础极限承载力值则愈小。换言之,当浅基础位于坡顶边缘处且坡角为垂直开挖情况时,则导致浅基础极限承载力降低约50 %。  相似文献   

20.
Numerical pile segment analysis is conducted in this study with an advanced soil model to investigate the skin friction behaviour of a drilled Cast‐In‐Place (CIP) pile installed in sand. Although the interface between the sand and pile is considered rough, thin elements adjacent to the pile are used to include effects of localized shear. Unit weights of fluid concrete and accompanied changes in stress are considered as the effects of pile installation. Changes in effective stresses are the most prominent effect due to pile installation with a change in direction of the major principal stress from the vertical to the radial direction. Shear behaviour of the sand at the interface during the early shear stage is related to the contractive tendency of the sand at small strain levels. Changes in the stress field around the pile with little changes in volumetric strain take place during the early shear stage. Stress redistributions during the early shear stage depend on the direction of the major principal stress before shear. Results of the pile segment analyses for drilled CIP piles show good agreement with design methods. Parametric studies are used to characterize the effects of sand density and pile diameter on the skin friction behaviour of drilled CIP piles. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号