首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A set of thermodynamic models is presented that, for the first time, allows partial melting equilibria to be calculated for metabasic rocks. The models consist of new activity–composition relations combined with end‐member thermodynamic properties from the Holland & Powell dataset, version 6. They allow for forward modelling in the system NaO–CaO–KO–FeO–MgO–AlO–SiO–HO–TiO–FeO. In particular, new activity–composition relations are presented for silicate melt of broadly trondhjemitic–tonalitic composition, and for augitic clinopyroxene with Si–Al mixing on the tetrahedral sites, while existing activity–composition relations for hornblende are extended to include KO and TiO. Calibration of the activity–composition relations was carried out with the aim of reproducing major experimental phase‐in/phase‐out boundaries that define the amphibolite–granulite transition, across a range of bulk compositions, at ≤13 kbar.  相似文献   

2.
Subduction of hydrated lithospheric mantle introduces HO, ferric iron, oxidized carbon and sulphur to the subduction zone system. The fate of these components is poorly known, but is intimately linked to the global geochemical cycles of iron, carbon and sulphur, the genesis of arc‐related ore deposits, the temporal evolution of mantle redox state and subduction‐related earthquakes and magmatism. thermocalc is used to provide first‐order constraints on the effect of subduction zone metamorphism on metamorphic redistribution of iron, carbon, sulphur and water in ultramafic rocks via construction of P?T and TX(O) pseudosections with open system calculation of the effect of fluid loss. The calculations replicate observed mineral assemblages in high‐P to low‐T ultramafic rocks at P?T conditions consistent with those suggested by other workers. The results are consistent with open system fluid loss without significant fluid infiltration. Water loss is complete by 850 C, the corresponding depth of fluid loss being consistent with that inferred for earthquakes in subducting slabs. Losses of carbon and sulphur are relatively minor, at around <5% and <1%, respectively, so it is envisaged that most carbon and sulphur subducted in ultramafic lithologies is transported to >5 GPa, below the depths of the source zone for arc volcanoes. Oxygen activity for rocks in closed systems that evolve with a fixed redox budget is calculated to change from ΔFMQ ?1 at 350 C to over ΔFMQ +3 at 850 C. This result emphasizes the need to consider redox budget as well as oxygen activity when the results of experiments performed at fixed oxygen activity relative to some buffer are interpreted in the context of natural systems. In open systems, devolatilization is calculated to increase the redox budget and oxygen activity of the residue via loss of methane and HS at the brucite‐out and serpentine‐out reactions respectively. No fluid‐induced mechanism for oxidation of sub‐arc mantle by transfer of redox budget from hydrated ultramafic lithologies to the overlying sub‐arc mantle was identified, although further thermodynamic data on fluid species such as S are required to confirm this.  相似文献   

3.
The Mogok metamorphic belt of Palaeogene age, which records subduction‐ and collision‐related events between the Indian and Eurasian plates, lies along the western margin of the Shan plateau in central Myanmar and continues northwards to the eastern Himalayan syntaxis. Reaction textures of clinohumite‐ and scapolite‐bearing assemblages in Mogok granulite facies metacarbonate rocks provide insights into the drastic change in fluid composition during exhumation of the collision zone. Characteristic high‐grade assemblages of marble and calcsilicate rock are clinohumite+forsterite+spinel+phlogopite+pargasite/edenite+calcite+dolomite, and scapolite+diopside+anorthite+quartz+calcite respectively. Calculated petrogenetic grids in CaO–MgO–Al2O3–SiO2–H2O–CO2 and subsets of this system were employed to deduce the pressure–temperature–fluid evolution of the clinohumite‐ and scapolite‐bearing assemblages. These assemblages suggest higher temperature (>780–810°C) and [=CO2/(CO2+H2O) >0.17–0.60] values in the metamorphic fluid for the peak granulite facies stage, assuming a pressure of 0.8 GPa. Calcite grains commonly show exsolution textures with dolomite particles, and their reintegrated compositions yield temperatures of 720–880°C. Retrograde reactions are mainly characterized by a reaction zone consisting of a dolomite layer and a symplectitic aggregate of tremolite and dolomite grown between clinohumite and calcite in marble, and a replacement texture of scapolite by clinozoisite in calcsilicate rock. These textures indicate that the retrograde reactions developed under lower temperature (<620°C) and (<0.08–0.16) conditions, assuming a pressure of 0.5 GPa. The metacarbonate rocks share metamorphic temperatures similar to the Mogok paragneiss at the peak granulite facies stage. The values of the metacarbonate rock at peak metamorphic stage are, however, distinctly higher than those previously deduced from carbonate mineral‐free paragneiss. Primary clinohumite, phlogopite and pargasite/edenite in marble have F‐rich compositions, and scapolite in calcsilicate rock contains Cl, suggesting a contrast in the halogen compositions of the metamorphic fluids between these two lithologies. The metamorphic fluid compositions were probably buffered within each lithology, and the effective migration of metamorphic fluid, which would have extensively changed the fluid compositions, did not occur during the prograde granulite facies stage throughout the Mogok metamorphic belt. The lower conditions of the Mogok metacarbonate rocks during the retrograde stage distinctly contrast with higher conditions recorded in metacarbonate rocks from other metamorphic belts of granulite facies. The characteristic low conditions were probably due to far‐ranging infiltration of H2O‐dominant fluid throughout the middle segment of the Mogok metamorphic belt under low‐amphibolite facies conditions during the exhumation and hydration stage.  相似文献   

4.
Mineral inclusions are ubiquitous in metamorphic rocks and elastic models for host‐inclusion pairs have become frequently used tools for investigating pressure–temperature (P–T) conditions of mineral entrapment. Inclusions can retain remnant pressures () that are relatable to their entrapment P–T conditions using an isotropic elastic model and P–T–V equations of state for host and inclusion minerals. Elastic models are used to constrain P–T curves, known as isomekes, which represent the possible inclusion entrapment conditions. However, isomekes require a temperature estimate for use as a thermobarometer. Previous studies obtained temperature estimates from thermometric methods external of the host‐inclusion system. In this study, we present the first P–T estimates of quartz inclusion entrapment by integrating the quartz‐in‐garnet elastic model with titanium concentration measurements of inclusions and a Ti‐in‐quartz solubility model (QuiG‐TiQ). QuiG‐TiQ was used to determine entrapment P–T conditions of quartz inclusions in garnet from a quartzofeldspathic gneiss from Goodenough Island, part of the (ultra)high‐pressure terrane of Papua New Guinea. Raman spectroscopic measurements of the 128, 206, and 464 cm?1 bands of quartz were used to calculate inclusion pressures using hydrostatic pressure calibrations (), a volume strain calculation (), and elastic tensor calculation (), that account for deviatoric stress. values calculated from the 128, 206, and 464 cm?1 bands’ hydrostatic calibrations are significantly different from one another with values of 1.8 ± 0.1, 2.0 ± 0.1, and 2.5 ± 0.1 kbar, respectively. We quantified elastic anisotropy using the 128, 206 and 464 cm?1 Raman band frequencies of quartz inclusions and stRAinMAN software (Angel, Murri, Mihailova, & Alvaro, 2019,  234 :129–140). The amount of elastic anisotropy in quartz inclusions varied by ~230%. A subset of inclusions with nearly isotropic strains gives an average and of 2.5 ± 0.2 and 2.6 ± 0.2 kbar, respectively. Depending on the sign and magnitude, inclusions with large anisotropic strains respectively overestimate or underestimate inclusion pressures and are significantly different (<3.8 kbar) from the inclusions that have nearly isotropic strains. Titanium concentrations were measured in quartz inclusions exposed at the surface of the garnet. The average Ti‐in‐quartz isopleth (19 ± 1 ppm [2σ]) intersects the average QuiG isomeke at 10.2 ± 0.3 kbar and 601 ± 6°C, which are interpreted as the P–T conditions of quartzofeldspathic gneiss garnet growth and entrapment of quartz inclusions. The P–T intersection point of QuiG and Ti‐in‐quartz univariant curves represents mechanical and chemical equilibrium during crystallization of garnet, quartz, and rutile. These three minerals are common in many bulk rock compositions that crystallize over a wide range of P–T conditions thus permitting application of QuiG‐TiQ to many metamorphic rocks.  相似文献   

5.
When graphite is present, carbon‐bearing species dissolve in the C‐O‐H fluid and lower the activity of water (). Accordingly, metamorphic reactions that involve water, namely dehydration and partial melting reactions, adjust their P–T positions to accommodate the change of . In this modelling study, pseudosections are calculated for graphite‐bearing systems that are either closed or that progressively lose fluid and/or melt. The diagrams incorporate a new model of CO2 solubility in felsic melts that we derived to be compatible with a recently published melt model. As the result of the lowered in the carbon‐bearing systems, the temperature displacements of the solidus can be as large as 50 °C at low pressures in cordierite‐bearing zones (<4 kbar), but are smaller than 15 °C at mid‐pressure P–T conditions (4–9 kbar). In the supersolidus region, the phase relations among silicate minerals + melt are very close to those in carbon‐free systems. The fluid CO2 content increases as temperature increases in the supersolidus assemblages. The CO2‐rich fluid can be stable in granulite facies conditions in an oxidized system. In graphitic systems, melt and/or cordierite dominate the CO2 budget of high‐grade rocks. During cooling, the fluid that exsolves from such crystalizing melt is CO2‐rich. In addition to the phase relations, the pseudosections presented in this study enable researchers to quantitatively investigate the evolution of phase modes, including graphite, along specific metamorphic P–T paths. At low pressures in the cordierite stability field, graphite is predicted to precipitate as the pressure increases or temperature decreases in the subsolidus assemblages, or temperature increases in the region of melt + fluid coexistence. On the other hand, the graphite abundance remains nearly constant along the mid‐pressure P–T series, but the graphite mode in the supersolidus region may increase due to residual enrichment if the melt is extracted. The modelling results show that metamorphic processes in closed systems lead to only small changes in graphite mode (a few tenths of a per cent). This strongly suggests that open‐system behaviours are required for large amounts of graphite deposition, including fluid infiltration and mixing or residual enrichment processes in high‐grade rocks. In addition to P–T pseudosections, P/T–XO diagrams (XO = O/(H + O) in the fluid) illustrate the thermodynamic features of internal buffering from another perspective, and explore the dependence of phase relations on the externally imposed redox state. If the system is equilibrated with CO2 or CH4‐rich infiltrating fluid, the temperature displacements of metamorphic reactions can be larger than 50 °C, compared with carbon‐free systems.  相似文献   

6.
Eclogite facies metamorphic rocks have been discovered from the Bizan area of eastern Shikoku, Sambagawa metamorphic belt. The eclogitic jadeite–garnet glaucophane schists occur as lenticular or sheet‐like bodies in the pelitic schist matrix, with the peak mineral assemblage of garnet + glaucophane + jadeite + phengite + quartz. The jadeitic clinopyroxene (XJd 0.46–0.75) is found exclusively as inclusions in porphyroblastic garnet. The eclogite metamorphism is characterized by prograde development from epidote–blueschist to eclogite facies. Metamorphic P–T conditions estimated using pseudosection modelling are 580–600 °C and 18–20 kbar for eclogite facies. Compared with common mafic eclogites, the jadeite–garnet glaucophane schists have low CaO (4.4–4.5 wt%) and MgO (2.1–2.3 wt%) bulk‐rock compositions. The P–T– pseudosections show that low XCa bulk‐rock compositions favour the appearance of jadeite instead of omphacite under eclogite facies conditions. This is a unique example of low XCa bulk‐rock composition triggered to form jadeite at eclogite facies conditions. Two significant types of eclogitic metamorphism have been distinguished in the Sambagawa metamorphic belt, that is, a low‐T type and subsequent high‐T type eclogitic metamorphic events. The jadeite–garnet glaucophane schists experienced low‐T type eclogite facies metamorphism, and the P–T path is similar to lawsonite‐bearing eclogites recently reported from the Kotsu area in eastern Shikoku. During subduction of the oceanic plate (Izanagi plate), the hangingwall cooled gradually, and the geothermal gradient along the subduction zone progressively decreased and formed low‐T type eclogitic metamorphic rocks. A subsequent warm subduction event associated with an approaching spreading ridge caused the high‐T type eclogitic metamorphism within a single subduction zone.  相似文献   

7.
This paper introduces the software solution Bingo-Antidote for thermodynamic calculations at equilibrium based on iterative thermodynamic models. It describes a hybrid strategy combining the strength of Gibbs energy minimization (GEM) and inverse thermobarometry models based on the comparison between the modelled and observed mineral assemblage, modes and compositions. The overall technique relies on quantitative compositional maps acquired by electron probe micro-analyser for obtaining a mutually consistent set of observed data such as bulk rock and mineral compositions. Thus it offers the opportunity to investigate metamorphic rocks on a microscale. The scoring part Bingo integrates three statistical model quality factors for the assemblage, for the mineral modes, for the mineral compositions combined in a global evaluation criterion that quantifies how the model reproduces the observations for the investigated volume. The input parameters of GEM affecting the model quality such as pressure, temperature and eventually some components of the bulk composition (e.g. the molar amount of hydrogen, carbon or oxygen) or activity variables of fluids and gases (e.g. , , f(O2)) can be optimized by inversion in Antidote using several mapping stages followed by a direct search optimization. Examples of iterative models based on compositional maps processed with Bingo-Antidote demonstrate the utility of the program. In contrast to the qualitative interpretation of phase diagrams, the inversion maximizes the benefits of GEM and permits the derivation of statistically ‘optimal’ pressure–temperature conditions for well-equilibrated samples. In addition, Bingo-Antidote opens new avenues for petrological investigations such as the generation of chemical potential landscape maps.  相似文献   

8.
The three‐dimensional disposition of cordierite and biotite crystals in a hornfels from the contact aureole of the Bugaboo Batholith is quantified using high‐resolution X‐ray micro‐computed tomography and global as well as scale‐dependent pattern statistics. The results demonstrate a random distribution of cordierite and biotite crystal sizes for all scales across the entire rock volume studied indicative of interface‐controlled prograde metamorphic reaction kinetics. The reaction considered responsible for the mineral assemblage and the formation of cordierite and biotite in the hornfels is Ms + Chl + Qtz = Crd + And + Bt + . Rock‐specific phase equilibria point to metamorphic conditions of ~520 –550 °C and 3 kbar for this reaction. The common approach to approximate the shape of crystals as spherical underestimates the influence of the Strauss hard‐core process on rock texture and may be misinterpreted to reflect ordering of crystal sizes by inhibition of nucleation and growth commonly associated with diffusion‐controlled reaction kinetics. According to our findings, Strauss hard‐core ordering develops at length scales equal to and less than the average major axis of the crystal population. This is significantly larger than what is obtained if a spherical crystal geometry would be assumed, and increases with deviation from sphericity. For the cordierite and biotite populations investigated in this research, Strauss hard‐core ordering developed at length scales of up to ~2.2 and 1.25 mm, respectively, which is almost 1 mm longer than the scales that would be obtained if a spherical geometry would have been assumed. Our results highlight the importance of a critical assessment of the geometrical model assumptions commonly applied in the three‐dimensional analysis of crystal size distributions, and underline the need for a quantitative understanding of interface processes in order to appreciate their role in the kinetics of contact metamorphic reactions and rock texture formation.  相似文献   

9.
At Bangriposi, variable stages in replacement of staurolite by chloritoid – Na–K–Ca mica shimmer aggregates in muscovite schists provides insight into the complex interplay between fluid flow, mass transfer, and dissolution–precipitation during pseudomorph growth. Idioblastic chloritoid growing into mica caps without causing visible deformation, and monomineralic chloritoid veins (up to 300 μm wide) within shimmer aggregates replacing staurolite attest to chloritoid nucleation in fluid‐filled conduits along staurolite grain boundaries and crystallographic planes. The growth of shimmer aggregates initiated along staurolite margins, and advanced inwards into decomposing staurolite along networks of crystallographically controlled fluid‐filled conduits. Coalescence among alteration zones adjacent to channel fills led to dismemberment and the eventual demise of staurolite. Mass balance calculation within a volume‐fixed, silica‐conserved reference frame indicate the shimmer aggregates grew via precipitation from fluids in response to mass transport that led to the addition of H2O, K2O, Na2O and CaO in the reaction zone, and Al2O3 was transported outward from the inward‐retreating margin of decomposing staurolite. This aided precipitation of chloritoid in veins and in the outer collars, and as disseminated grains in the shimmer aggregates at mid‐crustal condition (~520 ± 20 °C, 5.5 ± 2.0 kbar). Computation using one‐dimensional transport equation suggests that staurolite decomposition involved advection dominating over diffusive transport; the permeation of externally derived H2O caused flattening of chemical potential gradients in H2O and aqueous species, for example, and , computed using the Gibbs method. This suggests that staurolite decomposition was promoted by the infiltration of a large volume of H2O that flattened existing chemical potential gradients. In the initial stages of replacement, chloritoid super‐saturation in fluid caused preferential nucleation and growth of chloritoid at staurolite grain boundaries and in crystallographic planes. As reaction progressed, further chloritoid nucleation was halted, but chloritoid continued to grow as the 3‐mica aggregates continued to replace the remaining staurolite in situ, while the chloritoid‐compatible elements were transported in the water‐rich phase facilitating continued growth of the existing chloritoid grains.  相似文献   

10.
The Makran accretionary prism in SE Iran and SW Pakistan is one of the most extensive subduction accretions on Earth. It is characterized by intense folding, thrust faulting and dislocation of the Cenozoic units that consist of sedimentary, igneous and metamorphic rocks. Rock units forming the northern Makran ophiolites are amalgamated as a mélange. Metamorphic rocks, including greenschist, amphibolite and blueschist, resulted from metamorphism of mafic rocks and serpentinites. In spite of the geodynamic significance of blueschist in this area, it has been rarely studied. Peak metamorphic phases of the northern Makran mafic blueschist in the Iranshahr area are glaucophane, phengite, quartz±omphacite+epidote. Post peak minerals are chlorite, albite and calcic amphibole. Blueschist facies metasedimentary rocks contain garnet, phengite, albite and epidote in the matrix and as inclusions in glaucophane. The calculated P–T pseudosection for a representative metabasic glaucophane schist yields peak pressure and temperature of 11.5–15 kbar at 400–510 °C. These rocks experienced retrograde metamorphism from blueschist to greenschist facies (350–450 °C and 7–8 kbar) during exhumation. A back arc basin was formed due to northward subduction of Neotethys under Eurasia (Lut block). Exhumation of the high‐pressure metamorphic rocks in northern Makran occurred contemporarily with subduction. Several reverse faults played an important role in exhumation of the ophiolitic and HP‐LT rocks. The presence of serpentinite shows the possible role of a serpentinite diapir for exhumation of the blueschist. A tectonic model is proposed here for metamorphism and exhumation of oceanic crust and accretionary sedimentary rocks of the Makran area. Vast accretion of subducted materials caused southward migration of the shore.  相似文献   

11.
Experimental data on diffusion in olivine , are used to define certain terms – diffusion coefficient, jump frequency, characteristic distance, random walk – that are useful in a discussion of atom displacements under natural conditions. Examples of atom displacements in two metamorphic terranes of the Canadian Precambrian Shield are then examined, as follows. (i) In a high‐grade metamorphic terrane in the Mid‐Proterozoic Grenville Province (Otter Lake Area), Mg concentration gradients about dolomite microcrystals in calcite and Na gradients about albite microcrystals in K‐feldspar are viewed as stranded Mg–Ca and Na–K interdiffusion gradients, formed by exsolution during slow cooling from ~700 to ~400 °C. (ii) In the Archean Slave Province (Yellowknife area), the crystallization of sillimanite, near andalusite but within crystals of quartz, possibly occurred by coupled Al–Si and oxygen–vacancy interdiffusion in quartz at ~550 °C. And the crystallization of garnet from chlorite occurred by the two‐way crystal‐boundary diffusion of several kinds of atoms across distances ranging to 3 mm. (iii) In the Otter Lake area, the crystallization of orthopyroxene–hornblende–spinel reaction zones at boundaries between crystals of olivine and plagioclase in metagabbro, evidently occurred by the mechanism of interstitial diffusion, that transported Mg, Fe, Mn and O atoms across the reaction zone from olivine to the plagioclase–(hornblende+spinel) boundary, and Si, Al, Ca and Na atoms from plagioclase to the olivine–orthopyroxene boundary, accompanied by NaSi–CaAl interdiffusion in plagioclase, and the addition of hydrogen and minor Ti, Zn, F, Cl and K from beyond the reaction zone. Also, centimetric reaction zones, with abundant biotite and plagioclase, at boundaries between K‐feldspar gneiss and deformed amphibolite dykes, evidently formed by the reaction, strained hornblende (in amphibolite) + K‐feldspar (in gneiss)→biotite (in amphibolite) + plagioclase (in gneiss), with crystal‐boundary diffusion of (Na + Ca) atoms and of K atoms across the reaction zone.  相似文献   

12.
Temperature and fluid content are critical parameters that control rock rheology and strain localization in the continental crust. Here, we determine by thermodynamic modelling the of localized ductile shearing during cooling of three different granitoid plutons: the Rieserferner and the Adamello plutons in the Italian Alps, and the Lake Edison pluton in the Sierra Nevada—USA. Shear zones exploited precursor joints, associated veins and alteration zones. and PT phase diagram sections were computed with Perple_X in the system MnO−Na2O−CaO −K2O−FeO−MgO−Al2O3−SiO2−H2O−Fe2O3. The phase diagram sections show that the nucleation of the brittle precursors (joints, veins) occurred at T» 450°C at fluid-saturated conditions. Localized ductile shearing likely occurred at temperature ranging between 420 and 460°C evolving from initially fluid-saturated to fluid-undersaturated conditions in a closed system. In this temperature range, granitoid rocks are potentially subject to a series of retrograde metamorphic reactions replacing the load-bearing feldspars with weaker phyllosilicates. Metamorphic reactions occurred in spatial association with the precursory structures, leading to localized shearing. Decreasing temperature and fluid-undersaturated conditions likely hampered progressive strain accommodation in shear zones by slowing down metamorphic reactions, thermally activated dislocation creep processes, fluid-mediated deformation mechanisms and weakening mechanisms. Polyphase granitoid ultramylonite and mylonitic quartz veins have been affected differently by the fluid-undersaturated conditions of the system, as consequence of different dominant deformation mechanisms and syn-kinematic paragenesis during localized shearing. Localized ductile shearing in cooling plutons effectively occurs in a limited temperature range (420–460°C) in which the strain accommodation capacity of the shear zone is controlled by the negative feedback between the cooling rate, the kinetics of metamorphic reactions and deformation mechanisms, and the consumption of the limited amount of available fluids.  相似文献   

13.
The island of Seram, part of the northern limb of the Banda Arc in eastern Indonesia, exposes an extensive Mio‐Pliocene granulite facies migmatite complex (the Kobipoto Complex) comprising voluminous leucosome‐rich diatexites and scarcer Al–Fe‐rich residual granulites. The migmatites are intimately associated with ultramafic rocks of predominantly lherzolitic composition that were exhumed by substantial lithospheric extension beneath low‐angle detachment faults; heat supplied by the lherzolites was evidently a major driver for the granulite facies metamorphism and accompanying anatexis. Residual garnet–sillimanite granulites sampled from the Kobipoto Mountains, central Seram, contain scarce garnet‐hosted inclusions of hercynite spinel (~1.5 wt% ZnO) + quartz (± ilmenite) in direct grain‐boundary contact – an assemblage potentially indicative of metamorphism under ultrahigh‐temperature (UHT) conditions. thermocalc ‘Average PT’ reactions and melanosome‐specific thermocalc , TMO, and PT pseudosections in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO) chemical system, supported by Ti‐in‐garnet thermobarometry, are permissive of the rock having experienced a clockwise PT path peaking at 925 °C and 9 kbar – thus narrowly reaching UHT conditions – before undergoing near‐isothermal decompression to ~750 °C and ~4 kbar. Spinel + quartz assemblages are interpreted to have formed at or just after the metamorphic peak from localized reactions between sillimanite, ilmenite and surrounding garnet. Further decompression of the rock resulted in the formation of complex reaction microstructures comprising cordierite ± plagioclase coronae around garnet, and symplectic intergrowths of cordierite + spinel + ilmenite around sillimanite. Small grains of sapphirine + corundum developed subsequently within spinel by localized quartz‐absent reactions. The post‐peak evolution of the granulites may be related to previously published U–Pb zircon and 40Ar/39Ar ages of c. 16 Ma, further substantiating the claim for the Kobipoto Complex granulites having recorded Earth's youngest‐identified episode of UHT metamorphism, albeit at slightly lower temperature and higher pressure than previously inferred. The Kobipoto Complex granulites demonstrate how UHT conditions may be achieved in the ‘modern’ Earth by extreme lithospheric extension, which, in this instance, was driven by slab rollback of the Banda Arc.  相似文献   

14.
Permian‐aged metagabbros from the eclogite type‐locality in the eastern European Alps were partially to completely transformed to eclogite during Eoalpine intracontinental subduction. Microtextures developed along a preserved fluid infiltration and reaction front in the gabbros record the incipient gabbro‐to‐eclogite transition, allowing the details of the eclogitization process to be investigated. Original, anorthite‐rich igneous plagioclase is pervasively replaced by fine‐grained intergrowths of clinozoisite, kyanite and Na‐rich plagioclase. Where plagioclase was in contact with igneous orthopyroxene, 100–200 μm thick bimineralic coronae of symplectic kyanite and diopsidic clinopyroxene form along the edges of the grains. The rims of igneous orthopyroxene develop a complementary bimineralic corona of diopsidic clinopyroxene and garnet. Igneous clinopyroxene does not show any breakdown textures; however, jadeite content gradually increases towards the rims. In addition, exsolution lamellae inherited from the igneous clinopyroxene become progressively more jadeitic as eclogitization proceeds. Given that the igneous plagioclase is pervasively replaced by clinozoisite, kyanite and Na‐rich plagioclase, whereas kyanite–diopside symplectites are confined to narrow rim zones, we suggest that the development of these textures was controlled by the (im)mobility of different elements on different length scales. The presence of hydrous minerals in the core of anhydrous plagioclase indicates that H2O diffusivity occurred on a mm‐scale. By contrast, the size of the anhydrous diopside–kyanite and diopside–garnet symplectites indicate that Fe–Mg–Ca–Na diffusivity was limited to a 10s of μm scale. Chemical potential relations calculated in the idealized NCASH chemical system show that the clinozoisite–kyanite–albite intergrowths formed due to an increase of μH2O to plagioclase, whereas all other elements remained effectively immobile on the scale of this texture. Fluid conditions indicated by this texture span from virtually dry conditions (0.15) to H2O‐saturation, and therefore does not imply that the rocks were ever fluid‐saturated. Calculations in the CMAS and NCFMAS systems show that the gabbro‐to‐eclogite transition is characterized by the growth of garnet, diopsidic clinopyroxene and kyanite due to diffusion of Ca (+ Na) and Mg (+ Fe) along a μCaO (+ Na2O)–μMgO (+ FeO) chemical potential gradient developed between orthopyroxene and plagioclase compositional domains. The anhydrous nature of the textures indicate that the gabbro‐to‐eclogite transition is not driven by hydration; however, increased μH2O acts as a catalyst that increases diffusivity of all elements and rates of dissolution–precipitation, allowing the overstepped metamorphic reactions to occur. Our results show that crustal eclogite formation requires low H2O content, confirming that true eclogites are dry rocks.  相似文献   

15.
Chemical, spectrographic, and isotopic analyses are presentedfor the Franzfontein alkali granite and constituent minerals.This rock has the chemical character of granties produced byliquid crystal equilibrium. Dated at 1, 700?70m.y. by the constituentzircon, its crystallization formed part of a major period (theHuabian episode) of batholithic granite emplacement in northernSouth-West Africa. The occurrence of these crystalline rocksin the core of the Huab anticline defines the maximum possibleage of the overlying Otavi Facies sediments, precluding theircorrelation with the Transvaal System of South Africa. The imprint of the Damara metamorphism (Damaran episode) isreflected in the Sr/Rb age (560?30 m.y.) obtained for the biotite:the inversion of biotite to stilpnomelane and chlorite probablyrepresents the mineralogical effects of that metamorphis. Isotopicdata indicate that changes in the relative concentrations ofRb and Sr differed significantly in plagioclase and microcline;such data from feldspars in metamorphic rocks should, therefore,be interpreted with caution.  相似文献   

16.
Generation of granitic melt is believed to occur predominantly by melting through the breakdown of hydrous minerals. However, melting due to the influx of H2O has been recognized in anatectic amphibolite facies tonalitic grey gneisses, metagreywackes and low-P metapelites, and has consequently been proposed as an alternative mechanism for the generation of granitic melt. Melting induced by H2O addition is recognized from voluminous melt production at relatively low temperature, where hydrous minerals are stable and anhydrous minerals are preferentially consumed during melting. Mineral equilibrium modelling to determine the PT conditions, melt volumes, melting reactions and viable H2O sources reveals that the process is not restricted to specific compositions or PT conditions, although lower pressure and lithologies with a low hydrous mineral content are more favourable. Melting reactions in all lithologies primarily consume quartz and feldspars to yield 5–6 mol.% melt for each mol.% of H2O added. remains constant at ~0.70 to 0.77 during progressive melting as long as alkali feldspar is present. Once alkali feldspar is exhausted, plagioclase becomes the main reactant, producing more tonalitic melt compositions with gradually higher . Our results demonstrate that, at the site of melting, melting is driven by diffusion of H2O into the target rock along chemical potential gradients, rather than the advective flow of a mechanically distinct water-rich fluid phase. Melting will initiate and proceed as long as a gradient exists between the H2O source and target lithology. Our calculations show that an ordinary magma, such as an I-type magma with typical H2O content, has a high enough to be a viable H2O source, allowing diffusive H2O-fluxed melting to produce melt proportions and fertility comparable to that of dehydration melting. However, high degrees of partial melting require a considerable amount of H2O, which necessitates a continuously advecting H2O source such as a magma conduit or melt-bearing shear zone. A magmatic H2O source at emplacement level will undergo a similar amount of crystallization as the melt fraction produced in the target rock such that there will be no net melt production. Considering that shear-zone hosted magma conduits are localized features, diffusive H2O-fluxed melting is likely to only be viable in a small fraction of the anatectic orogenic crust. Although it may play an important role in locally raising melt volumes and modifying magma chemistry through mingling and hybridization, it does not appear to, of itself, be able to generate significant volumes of granitic melt.  相似文献   

17.
Abstract The Paikon Series is considered to be a volcanic arc sequence with a mainly neritic sedimentary sequence and bimodal tholeiitic volcanism of early Mesozoic age. The metamorphic assemblages are syn- to post-kinematic with respect to a pre-Tithonian tectonic phase and range from the lawsonite-chlorite-albite facies through transitional Na-amphibole-greenschist facies to the chlorite sub-zone of the greenschist facies. The metamorphic imprint of the Paikon Series corresponds to a temperature range from less than 330° C to ± 450° C under a total pressure from 3 kbar to 6–7 kbar. The overprinting of these facies on an earlier blueschist assemblage, related either to a subduction zone or to a tectonic overpressure caused by thrusting, is suspected.  相似文献   

18.
The South Tien Shan (STS) belt results from the last collision event in the western Central Asian Orogenic Belt (CAOB). Understanding its formation is of prime importance in the general framework of the CAOB. The Atbashi Range preserves high‐P (HP) rocks along the STS suture, but still, its global metamorphic evolution remains poorly constrained. Several HP units have been identified: (a) a HP tectonic mélange including boudins of mafic eclogites in a sedimentary matrix, (b) a large (>100 km long) high‐P metasedimentary unit (HPMU) and (c) a lower blueschist facies accretionary prism. Raman Spectroscopy on carbonaceous material combined with phengite and chlorite multiequilibria and isochemical phase diagram modelling indicates that the HPMU recorded homogeneous P–T conditions of 23–25 kbar and 560–570°C along the whole unit. 40Ar/39Ar dating on phengite from the HPMU ranges between 328 and 319 Ma at regional scale. These ages are interpreted as (re‐) crystallization ages of phengite during Tmax conditions at a pressure range of 20–25 kbar. Thermobarometry on samples from the HP tectonic mélange provides similar metamorphic peak conditions. Thermobarometry on the blueschist to lower greenschist facies accretionary prism indicates that it underwent P–T conditions of 5–6 kbar and 290–340°C, highlighting a 17–20 kbar pressure gap between the HPMU‐tectonic mélange units and the accretionary prism. Comparison with available geochronological data suggests a very short time span between the prograde path (340 Ma), HP metamorphic peak (330 Ma), the Tmax (328–319 Ma) and the final exhumation of the HPMU (303–295 Ma). Extrusion of the HPMU, accommodated by a basal thrust and an upper detachment, was driven by buoyant forces from 70–75 km up to 60 km depth, which directly followed continental subduction and detachment of the HPMU. At crustal depths, extrusion was controlled by collisional tectonics up to shallow levels. Lithological homogeneity of the HPMU and its continental‐derived character from the North Tien Shan suggest this unit corresponds to the hyper‐extended continental margin of the Kazakh continent, subducted southward below the north continental active margin of the Tarim craton. Integration of the available geological data allows us to propose a general geodynamic scenario for Tien Shan during the Carboniferous with a combination of (a) N‐dipping subduction below the Kazakh margin of Middle Tien Shan until 390–340 Ma and (b) S‐dipping subduction of remaining Turkestan marginal basins between 340 and 320 Ma.  相似文献   

19.
扬子板块俯冲加积杂岩的初步研究   总被引:5,自引:0,他引:5  
根据大别—苏鲁造山带浅变质岩系的地质产状,本文将其与高压—超高压岩石一起作为大陆板块俯冲的加积杂岩来考虑,发现它们在岩石类型、变质时代和原岩性质等方面具有一定的可比性,因此可看作为扬子板块大陆俯冲的加积杂岩。由此根据板块俯冲的加积楔模型,对浅变质岩系的形成和演化过程进行了地球动力学解释,结果对扬子板块俯冲及其与华北板块碰撞的俯冲带和缝合带位置提供了制约。  相似文献   

20.
大别造山带浅变质岩的地质-地球化学特征及成因机制   总被引:1,自引:0,他引:1  
大别造山带超高压变质带内部及其北缘,出露仅经过绿片岩相变质作用的浅变质岩系。通过对部分浅变质岩的区域分布、地质特征及地球化学的综合研究表明,这些浅变质岩系形成于新元古代扬子板块北缘的裂陷盆地中,并遭受新元古代岩浆侵位和以寒冷气候位特征的大气降水热液蚀变,共同经历了与扬子大陆板块俯冲-碰撞过程中有关的构造热事件;因此认为这些浅变质为扬子板块俯冲过程中被“刮”下来的构造残片,为大陆板块俯冲过程中形成的加积杂岩,并为扬子板块与华北板块的俯冲和碰撞的动力学过程提供有力的科学佐证。在此基础上,厘定了大别造山带浅变质岩的形成及其与扬子大陆板块俯冲的构造模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号