首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We describe, date and constrain the P–T conditions of a syntectonic inverted metamorphic sequence associated with continental collision and crustal‐scale thrusting in one of the key regions of the late Palaeozoic Variscan belt of Western Europe – the Champtoceaux Complex (Armorican Massif, France), interpreted as a trace of the Variscan suture zone between Laurussia and Gondwana. The Complex consists of several stacked units, some of them eclogite‐bearing, that are sandwiched between two main pieces of continental crust – the Parautochthon and the Upper Allochthon. Moderately to steeply dipping foliation parallels the main lithological boundaries. From the bottom to the top of the metamorphic rock pile, the following sequence testifies to the syntectonic temperature increase: chlorite–biotite‐bearing metagreywackes (Parautochthon); orthogneisses with eclogite lenses; micaschists with chloritoid–chlorite–garnet; orthogneisses; micaschists with staurolite–biotite–garnet with chloritoid inclusions (Lower Allochthon); and migmatites with boudins of eclogite and kyanite–biotite–garnet‐bearing metapelitic lenses (Upper Allochthon). Mylonitic amphibolites with lenses of serpentinized peridotite mark the boundary between the Lower Allochthon and the overlying Upper Allochthon, suggesting the presence of a major thrust. It is inferred that the latter is responsible for the development of the inverted metamorphic zoning. Multiequilibrium thermobarometry and pseudosections calculated with thermocalc indicate that equilibration temperatures of the syntectonic peak metamorphic assemblages increase upwards in the rock pile from <500 °C in the Parautochthon to >650 °C in the Upper Allochthon. All units equilibrated at similar pressures between 7 and 10 kbar. In the Upper Allochthon, chronological results on muscovite suggest initial cooling from c. 343 Ma (muscovite Rb–Sr) to c. 337 Ma (muscovite 40Ar–39Ar). A subsequent very rapid temperature decrease is suggested by the synchronous closure of the muscovite and biotite K–Ar and biotite Rb–Sr isotopic systems (c. 337–335 Ma). This cooling is also recorded in the Upper Micaschists of the Lower Allochthon and in the Parautochthon with muscovite 40Ar–39Ar ages of c. 336–334 and 332 Ma, respectively. Ages of c. 343 Ma inferred from disturbed muscovite spectra from the Parautochthon are possibly linked to a previous higher pressure metamorphic event in this unit. It is suggested that the development of the inverted metamorphic zoning in the Champtoceaux Complex is due to the emplacement of a hot nappe over colder units and is contemporaneous with major crustal thrusting and associated pervasive ductile deformation. The preservation of this inverted field gradient was possible because of fast cooling, tentatively associated with the syn‐compressional denudation of the tectonic pile, expressed by the detachment at the top of the nappe pile. The efficiency of cooling is best shown by the near‐coincidence of Rb–Sr and 40Ar–39Ar ages, obtained on both sides of the major thrust. Finally, we highlight similarities with other regions of the West‐European Variscan belt (Iberian massif, French Massif Central) and suggest that inverted metamorphic zoning is systematically associated with the contact between the Lower and Upper Allochthons.  相似文献   

2.
We report two new eclogite localities (at Kanayamadani and Shinadani) in the high‐P (HP) metamorphic rocks of the Omi area in the western most region of Niigata Prefecture, Japan, which form part of the Hida Gaien Belt, and determine metamorphic conditions and pressure–temperature (PT) paths. The metamorphic evolution of the eclogites is characterized by a tight hairpin‐shaped PT path from prograde epidote–blueschist facies to peak eclogite facies and then retrograde blueschist facies. The prograde metamorphic stage is characterized by various amphibole (winchite, barroisite, glaucophane) inclusions in garnet, whereas the peak eclogite facies assemblage is characterized by omphacite, garnet, phengite and rutile. Peak PT conditions of the eclogites were estimated to be ~600°C and up to 2.0 GPa by conventional cation‐exchange thermobarometry, Ti‐in‐zircon thermometry and quartz inclusion Raman barometry respectively. However, the Raman spectra of carbonaceous material thermometry of metapelites associated with the eclogites gave lower peak temperatures, possibly due to metamorphism at different conditions before being brought together during exhumation. The blueschist facies overprint following the peak of metamorphism is recognized by the abundance of glaucophane in the matrix. Zircon grains in blueschist facies metasedimentary samples from two localities adjacent to the eclogites have distinct oscillatory‐zoned cores and overgrowth rims. Laser ablation inductively coupled plasma mass spectrometry U–Pb ages of the detrital cores yield a wide range between 3,200 and 400 Ma, with a peak at 600–400 Ma. In the early Palaeozoic, proto‐Japan was located along the continental margin of the South China craton, providing the source of the older population of detrital zircon grains (3,200–600 Ma) deposited in the trench‐fill sediments. In addition, subduction‐related magmatism c. 500–400 Ma is recorded in the crust below proto‐Japan, which might have been the source for the younger detrital zircon grains. The peak metamorphic age was constrained by SHRIMP dating of the overgrowth rims, yielding Tournaisian ages of 347 ± 4 Ma, suggesting subduction in the early Carboniferous. Our results provide clear constraints on the initiation of subduction, accretion and the development of an arc‐trench system along the active continental margin of the South China craton and help to unravel the Palaeozoic tectonic history of proto‐Japan.  相似文献   

3.
The North Qaidam Orogenic Belt (NQOB), lying at the northern margin of the Tibet Plateau, records two orogenic cycles: A Proterozoic cycle related to the amalgamation and breakup of the supercontinent Rodinia, and an Early Palaeozoic cycle including oceanic subduction and continental deep subduction. At present, the only information about the Proterozoic cycle is the concurrent c. 1,000–900 Ma magmatic and metamorphic events, which limited the understanding of the Proterozoic evolution of NQOB and the relationship between the Qaidam Block and other Rodinia fragments. In this study, a kyanite‐bearing eclogite was identified in Yuka terrane. It has positive‐slope chondrite‐normalized rare earth element distribution patterns, similar to present‐day N‐MORB. LA–ICP–MS zircon U–Pb dating obtained a protolith age of 1,273 Ma and an eclogite facies metamorphic age of 437 Ma, which is similar to the continental deep subduction age of the Yuka terrane. Zircon Lu–Hf analysis show that the magmatic zircon cores have high εHf(t) of 8.36–15.98 and TDM1 of 1,450–1,131 Ma (M = 1,303 ± 55 Ma, consistent with its protolith age within error), indicating a juvenile crust protolith of the eclogite. The MORB‐like whole‐rock composition and zircon U–Pb and Lu–Hf analysis indicate that the protolith of the kyanite‐bearing eclogite was a Mesoproterozoic oceanic slice. P–T pseudosection analysis shows that the kyanite‐bearing eclogite experienced four metamorphic stages: (1) a prograde stage with the assemblage garnet+omphacite+talc+lawsonite+phengite+quartz at 22.4–23.2 kbar and 585°C; (2) a peak stage with the assemblage garnet+omphacite+lawsonite+phengite+coesite at 32.5 kbar and 670°C; (3) an early retrograde stage with the assemblage garnet+omphacite+kyanite+phengite+coesite/quartz±lawsonite at 27.1–30.0 kbar and 670–690°C; and (4) a late retrograde stage with the assemblage garnet+omphacite+epidote+hornblende+phengite+quartz at <18.0 kbar. The established clockwise P–T path is similar with other continental‐type eclogites in this area. On the basis of the geochemical and geochronological data, as well as the P–T path, we suggest that the protolith of the kyanite‐bearing eclogite was emplaced in the active margin of the Qaidam Block during the assembly of Rodinia and underwent continental deep subduction in the Early Palaeozoic. We conclude that (1) the Qaidam Block participated in the assembly of the Rodinia supercontinent. It was situated at or proximal to the margin of the supercontinent and probably close to India, east Antarctica and Tarim; and (2) both Mesoproterozoic and Early Palaeozoic oceanic crust slices occur in the NQOB. Thus, special caution is needed when using the metamorphic ages of oceanic affinity eclogites without protolith ages to constrain the evolution history of the North Qaidam UHPM belt.  相似文献   

4.
《Gondwana Research》2014,25(2):756-763
The Variscan suture exposed in NW Iberia contains a stack of terranes including two allochthonous units with continental affinity and Gondwanan provenance (Upper and Basal Units), separated by an ophiolite belt where the most common units show protolith ages at c. 395 Ma. Recent Lu–Hf zircon data obtained from these ophiolites indicate interaction between the gabbroic magmas and old continental crust. Hence, the ophiolites could not have originated in a deep ocean basin associated with a mature mid-ocean-ridge or intraoceanic subduction. The tectonothermal evolution of the continental terranes bounding the suture zone records two consecutive events of deep subduction. The Upper Units record an initial high-P/ultra-high-P metamorphic event that occurred before 400–390 Ma, while the Basal Units were affected by a second high-P/low-to-intermediate-T metamorphic event dated at c. 370 Ma. Continental subduction affected the most external margin of Gondwana and developed in a setting of dextral convergence with Laurussia. Development of the two high-P events alternated with the opening of an ephemeral oceanic basin, probably of pull-apart type, in Early Devonian times. This ephemeral oceanic domain is suggested as the setting for the protoliths of the most common ophiolites involved in the Variscan suture. Current ideas for the assembly of Pangea advocate a single collisional event between Gondwana and Laurussia in the Carboniferous. However, the new evidence from the allochthonous terranes of the Variscan belt suggests a more complex scenario for the assembly of the supercontinent, with an interaction between the colliding continental margins that started earlier and lasted longer than previously considered. Based on modern analogs of continental interaction, the development of complex collisions, as here suggested for Gondwana and Laurussia during the assembly of Pangea, could have been the norm rather than the exception throughout Earth history.  相似文献   

5.
The South Tien Shan (STS) belt results from the last collision event in the western Central Asian Orogenic Belt (CAOB). Understanding its formation is of prime importance in the general framework of the CAOB. The Atbashi Range preserves high‐P (HP) rocks along the STS suture, but still, its global metamorphic evolution remains poorly constrained. Several HP units have been identified: (a) a HP tectonic mélange including boudins of mafic eclogites in a sedimentary matrix, (b) a large (>100 km long) high‐P metasedimentary unit (HPMU) and (c) a lower blueschist facies accretionary prism. Raman Spectroscopy on carbonaceous material combined with phengite and chlorite multiequilibria and isochemical phase diagram modelling indicates that the HPMU recorded homogeneous P–T conditions of 23–25 kbar and 560–570°C along the whole unit. 40Ar/39Ar dating on phengite from the HPMU ranges between 328 and 319 Ma at regional scale. These ages are interpreted as (re‐) crystallization ages of phengite during Tmax conditions at a pressure range of 20–25 kbar. Thermobarometry on samples from the HP tectonic mélange provides similar metamorphic peak conditions. Thermobarometry on the blueschist to lower greenschist facies accretionary prism indicates that it underwent P–T conditions of 5–6 kbar and 290–340°C, highlighting a 17–20 kbar pressure gap between the HPMU‐tectonic mélange units and the accretionary prism. Comparison with available geochronological data suggests a very short time span between the prograde path (340 Ma), HP metamorphic peak (330 Ma), the Tmax (328–319 Ma) and the final exhumation of the HPMU (303–295 Ma). Extrusion of the HPMU, accommodated by a basal thrust and an upper detachment, was driven by buoyant forces from 70–75 km up to 60 km depth, which directly followed continental subduction and detachment of the HPMU. At crustal depths, extrusion was controlled by collisional tectonics up to shallow levels. Lithological homogeneity of the HPMU and its continental‐derived character from the North Tien Shan suggest this unit corresponds to the hyper‐extended continental margin of the Kazakh continent, subducted southward below the north continental active margin of the Tarim craton. Integration of the available geological data allows us to propose a general geodynamic scenario for Tien Shan during the Carboniferous with a combination of (a) N‐dipping subduction below the Kazakh margin of Middle Tien Shan until 390–340 Ma and (b) S‐dipping subduction of remaining Turkestan marginal basins between 340 and 320 Ma.  相似文献   

6.
In this study, in situ U–Pb monazite ages and Lu–Hf garnet geochronology are used to distinguish mineral parageneses developed during Devonian–Carboniferous and Cretaceous events in migmatitic paragneiss and orthogneiss from the Fosdick migmatite–granite complex in West Antarctica. SHRIMP U–Pb monazite ages define two dominant populations at 365–300 Ma (from cores of polychronic grains, dominantly from deeper structural levels in the central and western sectors of the complex) and 120–96 Ma (from rims of polychronic grains, dominantly from the central and western sectors of the complex, and from monochronic grains, mostly from shallower structural levels in the eastern sector of the complex). For five paragneisses and two orthogneisses, Lu–Hf garnet ages range from 116 to 111 Ma, c. 12–17 Ma older than published Sm–Nd garnet ages of 102–99 Ma from three of the same samples. Garnet grains in the analysed samples generally have Lu‐enriched rims relative to Lu‐depleted cores. By contrast, for three of the same samples, individual garnet grains have flat Sm concentrations consistent with high‐T diffusive resetting. Lutetium enrichment of garnet rims is interpreted to record the breakdown of a Lu‐rich accessory mineral during the final stage of garnet growth immediately prior to the metamorphic peak, and/or the preferential retention of Lu in garnet during breakdown to cordierite in the presence of melt concomitant with the initial stages of exhumation. Therefore, garnet is interpreted to be part of the Cretaceous mineral paragenesis and the Lu–Hf garnet ages are interpreted to record the timing of close‐to‐peak metamorphism for this event. For the Devonian–Carboniferous event, phase equilibria modelling of the metasedimentary protoliths to the paragneiss and a diatexite migmatite restrict the peak P–T conditions to 720–800 °C at 0.45–1.0 GPa. For the Cretaceous event, using both forward and inverse phase equilibria modelling of residual paragneiss and orthogneiss compositions, the P–T conditions after decompression are estimated to have been 850–880 °C at 0.65–0.80 GPa. These P–T conditions occurred between c. 106 and c. 96 Ma, determined from Y‐enriched rims on monazite that record the timing of garnet and biotite breakdown to cordierite in the presence of melt. The effects of this younger metamorphic event are dominant throughout the Fosdick complex.  相似文献   

7.
The Ross orogen of Antarctica is an extensive (>3000 km‐long) belt of deformed and metamorphosed sedimentary rocks and granitoid batholiths, which formed during convergence and subduction of palaeo‐Pacific lithosphere beneath East Gondwana in the Neoproterozoic–early Palaeozoic. Despite its prominent role in Gondwanan convergent tectonics, and a well‐established magmatic record, relatively little is known about the metamorphic rocks in the Ross orogen. A combination of garnet Lu–Hf and monazite U–Pb (measured by laser‐ablation split‐stream ICP‐MS) geochronology reveals a protracted metamorphic history of metapelites and garnet amphibolites from a major segment of the orogen. Additionally, direct dating of a common rock‐forming mineral (garnet) and accessory mineral (monazite) allows us to test assumptions that are commonly used when linking accessory mineral geochronology to rock‐forming mineral reactions. Petrography, mineral zoning, thermobarometry and pseudosection modelling reveal a Barrovian‐style prograde path, reaching temperatures of ~610–680 °C. Despite near‐complete diffusional resetting of garnet major element zoning, the garnet retains strong rare earth element zoning and preserves Lu–Hf dates that range from c. 616–572 Ma. Conversely, monazite in the rocks was extensively recrystallized, with concordant dates that span from c. 610–500 Ma, and retain only vestigial cores. Monazite cores yield dates that overlap with the garnet Lu–Hf dates and typically have low‐Y and heavy rare earth element (HREE) concentrations, corroborating interpretations of low‐Y and low‐HREE monazite domains as records of synchronous garnet growth. However, ratios of REE concentrations in garnet and monazite do not consistently match previously reported partition coefficients for the REE between these two minerals. High‐Y monazite inclusions within pristine, crack‐free garnet yield U–Pb dates significantly younger than the Lu–Hf dates for the same samples, indicating recrystallization of monazite within garnet. The recrystallization of high‐Y and high‐HREE monazite domains over >50 Ma likely records either punctuated thermal pulses or prolonged residence at relatively high temperatures (up to ~610–680 °C) driving monazite recrystallization. One c. 616 Ma garnet Lu–Hf date and several c. 610–600 Ma monazite U–Pb dates are tentatively interpreted as records of the onset of tectonism metamorphism in the Ross orogeny, with a more robust constraint from the other Lu–Hf dates (c. 588–572 Ma) and numerous c. 590–570 Ma monazite U–Pb dates. The data are consistent with a tectonic model that involves shortening and thickening prior to widespread magmatism in the vicinity of the study area. The early tectonic history of the Ross orogen, recorded in metamorphic rocks, was broadly synchronous with Gondwana‐wide collisional Pan‐African orogenies.  相似文献   

8.
Within the Mediterranean realm, the Rhodopes represent a nappe stack of oceanic and continental fragments assembled along the Eurasian continental margin during the Alpine orogeny. The timing of the high-pressure (HP) metamorphism has long been ambiguous, lacking detailed geochronological and geochemical control on subduction-exhumation and nappe stacking processes. Here we apply the Lu–Hf and Sm–Nd chronometers to a suite of representative eclogite samples covering two different key units of the Rhodopean nappe stack: (1) the Kimi Complex (Upper Allochthon) and (2) the Middle Allochthon. In addition to geochronology, we also determined whole rock Hf and Nd isotope compositions as well as major and trace element concentrations in order to constrain the nature of the eclogite protoliths. Two HP metamorphic events were revealed by Lu–Hf geochronology: (1) a Lower Cretaceous event in the Upper Allochthon (126.0 ± 1.7 Ma) and (2) an Eocene event in the Middle Allochthon (44.6 ± 0.7 Ma; 43.5 ± 0.4 Ma; 42.8 ± 0.5 Ma), at conditions of ca. 700°C/20–25 kbar. Our new data provide direct evidence for multiple subduction events in the Rhodopes. Exhumation and subsequent thrusting of the Middle Allochthon on the Lower Allochthon can be narrowed down to the time span between 42 and 34 Ma. In a broader tectonic context, the Eocene ages for the HP metamorphism support the view that the Rhodopes represent a large-scale tectonic window, exposing the deepest nappe units of the Hellenides.  相似文献   

9.
Zircon SHRIMP U–Pb and in-situ Lu–Hf isotopic analyses via laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) of a tuff within the Upper Paleozoic from Western Beijing were carried out to give new constraints on volcano eruption ages and source area of the tuffs within the North China block (NCB). SHRIMP U–Pb zircon dating of the tuff yielded a 206Pb/238U weighted mean age of 296 ± 4 Ma (95% confidence, MSWD = 3.3), which is very similar to the emplacement age of the newly discovered Carboniferous calc-alkaline, I-type continental arc granitoid plutons in the Inner Mongolia Paleo-uplift (IMPU) on the northern margin of the NCB. In-situ Lu–Hf analysis results of most zircons from the tuff yielded initial 176Hf/177Hf ratios from 0.282142 to 0.282284 and εHf(t) values from − 15.9 to − 10.7. These Lu–Hf isotopic compositions are very similar to those of the Late Carboniferous granitoids in the IMPU, but are very different to those of the Central Asian Orogenic Belt (CAOB). Together with the sedimentary and tectonic analyses results, we inferred that the source area of the tuffs within the NCB is the IMPU instead of the CAOB. Therefore, some arc volcanoes once existed in the IMPU on northern margin of the NCB during the Late Carboniferous, but they were entirely eroded due to strong exhumation and erosion of the IMPU during the Late Carboniferous to Early Jurassic.  相似文献   

10.
Major element, trace element and Lu–Hf geochronological data from amphibolite facies pelitic schist in the Raft River and Albion Mountains of northwest Utah and southern Idaho indicate that garnet grew during increasing pressure, interpreted to be the result of tectonic burial and crustal thickening during Sevier orogenesis. Garnet growth was interrupted by hiatuses interpreted from discontinuities in major element zonation. Pressure–temperature paths were determined from the pre‐hiatus portions of the garnet chemical zoning profiles and indicate an increase of ~2 kbar and ~50 °C in the western Raft River Mountains. Garnet Lu–Hf dates of 150 ± 1 Ma in the western Raft River Mountains and 138.7 ± 0.7 Ma and 132 ± 5 Ma in the southern Albion Mountains indicate the timing of garnet growth. Lutetium garnet zoning profiles indicate that the Lu–Hf ages are biased towards the post‐hiatus or outer pre‐hiatus segments, indicating that the determined ages likely post‐date the recorded P–T path history or date the tail end of the paths. Crustal thickening associated with Sevier orogenesis in the western Raft River Mountains thus began slightly before 150 ± 1 Ma, in the Late Jurassic. This study shows that integrating P–T paths determined from garnet growth zoning with Lu–Hf garnet geochronology and in situ garnet trace element analyses is an effective approach for interpreting and dating deformation events in orogenic belts.  相似文献   

11.
Migmatites are predominant in the North Qinling (NQ) orogen, but their formation ages are poorly constrained. This paper presents a combined study of cathodoluminescence imaging, U–Pb age, trace element and Hf isotopes of zircon in migmatites from the NQ unit. In the migmatites, most zircon grains occur as new, homogeneous crystals, while some are present as overgrowth rims around inherited cores. Morphological and trace element features suggest that the zircon crystals are metamorphic and formed during partial melting. The inherited cores have oscillatory zoning and yield U–Pb ages of c. 900 Ma, representing their protolith ages. The early Neoproterozoic protoliths probably formed in an active continental margin, being a response to the assembly of the supercontinent Rodinia. The migmatite zircon yields Hf model ages of 1911 ± 20 to 990 ± 22 Ma, indicating that the protoliths were derived from reworking of Palaeoproterozoic to Neoproterozoic crustal materials. The anatexis zircon yields formation ages ranging from 455 ± 5 to 420 ± 4 Ma, with a peak at c. 435 Ma. Combined with previous results, we suggest that the migmatization of the NQ terrane occurred at c. 455–400 Ma. The migmatization was c. 50 Ma later than the c. 490 Ma ultra‐high‐P (UHP) metamorphism, indicating that they occurred in two independent tectonic events. By contrast, the migmatization was coeval with the granulite facies metamorphism and the granitic magmatism in the NQ unit, which collectively argue for their formation due to the northward subduction of the Shangdan Ocean. UHP rocks were distributed mainly along the northern margin and occasionally in the inner part of the NQ unit, indicating that they were exhumed along the northern edge and detached from the basement by the subsequent migmatization process.  相似文献   

12.
We present Lu–Hf dates from multiple growth zones within two large garnet porphyroblasts by a micro‐sampling method. A single eclogite sample, taken from the Huwan shear zone in the Hong'an orogen, was investigated with Lu–Hf geochronology by micro‐sampling and traditional bulk separation methods. The sample contains a few large garnet porphyroblasts up to several centimetres in diameter and a second major population of smaller (0.1–2.0 mm) garnet porphyroblasts, comprised of dark cores and pale rims. Elemental compositions and mineral inclusions in the garnet appear consistent with two garnet generations. Lu–Hf dates (c. 400–264 Ma) were determined from twelve micro‐sawed garnet sections from two large garnet porphyroblasts. These Lu–Hf dates overlap with age peaks defined by 115 SIMS zircon U–Pb analyses from the same eclogite sample. Bulk analyses of smaller garnet separates define a minimum date of c. 306 Ma and a maximum date of c. 252 Ma for the dark cores and pale rims respectively. These Lu–Hf dates were interpreted to bracket the period of garnet growth and the broad interval from c. 400 to 264 Ma is best explained by protracted and episodic garnet growth, which may require that these rocks experienced two subduction cycles that were initiated during the Devonian and terminated in the Triassic.  相似文献   

13.
Major and trace‐element zoning in garnet, in combination with Rb–Sr, Sm–Nd and Lu–Hf geochronology, provide evidence for a protracted garnet growth history for the Zermatt‐Saas Fee (ZSF) ophiolite, western Alps. Four new Lu–Hf ages from Pfulwe (c. 52–46 Ma) and one from Chamois (c. 52 Ma) are very similar to a previously published Lu–Hf age from Lago di Cignana. Overall, the similarity of geochronological and garnet zoning patterns suggests that these three localities had a similar prograde tectonic history, commensurate with their similar structural position near the top of the ZSF. Samples from the lower part of the ZSF at Saas Fee and St. Jacques, however, produced much younger Lu–Hf ages (c. 41–38 Ma). Neither differences in whole‐rock geochemistry, which might produce distinct garnet growth histories, nor rare‐earth‐element zoning in garnet, can account for the age differences in the two suites. This suggests a much later prograde history for the lower part of the ZSF, supporting the idea that it was subducted diachronously. Such a model is consistent with changes in subduction vectors based on plate tectonic reconstructions, where early oblique subduction, which produced long prograde garnet growth, changed to more orthogonal subduction, which corresponds to shorter prograde garnet growth. Six new Rb–Sr phengite ages range from c. 42 to 39 Ma and, in combination with previously published Rb–Sr ages, constrain the timing of the transition from eclogite to upper greenschist facies P–T conditions. The proximity of the ZSF in the Saas Fee region to the underlying continental Monte Rosa unit and the similarity of peak‐metamorphic ages suggest these two units were linked for part of their tectonic history. This in turn indicates that the Monte Rosa may have been partly responsible for rapid exhumation of the ZSF unit.  相似文献   

14.
This study presents Lu–Hf geochronology of zoned garnet in high‐P eclogites from the North Qilian orogenic belt. Selected samples have ~mm‐sized garnet grains that have been sampled with a micro‐drill and analysed for dating. The Lu–Hf dates of bulk garnet separates, micro‐drilled garnet cores and the remnant, rim‐enriched garnet were determined by two‐point isochrons, with cores being consistently older than the bulk‐ and rim‐enriched garnet. The bulk garnet separates of each sample define identical garnet–whole rock isochron date of c. 457 Ma. Consistent U–Pb zircon dates of 455 ± 8 Ma were obtained from the eclogite. The Lu–Hf dates of the drilled cores and rim‐rich separates suggest a minimum garnet growth interval of 468.9 ± 2.4 and 452.1 ± 1.6 Ma. Major and Lu element profiles in the majority of garnet grains show well‐preserved Rayleigh‐style fractionated bell‐shaped Mn and Lu zoning profiles, and increasing Mg from core to rim. Pseudosection modelling indicates that garnet grew along a P–T path from ~470–525°C and ~2.4–2.6 GPa. The exceptional high‐Mn garnet core in one sample indicates an early growth during epidote–blueschist facies metamorphism at <460°C and <0.8 GPa. Therefore, the Lu–Hf dates of drilled cores record the early prograde garnet growth, whereas the Lu–Hf dates of rim‐rich fractions provide a maximum age for the end of garnet growth. The microsampling approach applied in this study can be broadly used in garnet‐bearing rocks, even those without extremely large garnet crystals, in an attempt to retrieve the early metamorphic timing recorded in older garnet cores. Given a proper selection of the drill bit size and a detailed crystal size distribution analysis, the cores of the mm‐sized garnet in most metamorphic rocks can be dated to yield critical constraints on the early timing of metamorphism. This study provides new crucial constraints on the timing of the initial subduction (before c. 469 Ma) and the ultimate closure (earlier than c. 452 Ma) of the fossil Qilian oceanic basin.  相似文献   

15.
Metatexite and diatexite migmatites are widely distributed within the upper amphibolite and granulite facies zones of the Higo low‐P/high‐T metamorphic terrane. Here, we report data from an outcrop in the highest grade part of the granulite facies zone, in which diatexite occurs as a 3 m thick layer between 2 m thick layers of stromatic‐structured metatexite within pelitic gneiss. The migmatites and gneiss contain the same peak mineral assemblage of biotite + plagioclase + quartz + garnet + K‐feldspar with retrograde chlorite ± muscovite and some accessory minerals of ilmenite ± rutile ± titanite + apatite + zircon + monazite ± pyrite ± zinc sulphide ± calcite. Calculated metamorphic P–T conditions are 800–900 °C and 9–12 kbar. Zircon in the diatexite forms elongate euhedral crystals with oscillatory zoning, but no core–rim structure. Zircon from the gneiss and metatexite forms euhedral–subhedral grains comprising inherited cores overgrown by thin rims. The overgrowth rims in the metatexite have lower Th/U ratios than zircon in the diatexite and yield a 206Pb/238U age of 116.0 ± 1.6 Ma, which is older than the 110.1 ± 0.6 Ma 206Pb/238U age derived from zircon in the diatexite. Zircon from the diatexite has variable REE contents with convex upward patterns and flat normalized HREE, whereas the overgrowth rims in the metatexite and gneiss have steep HREE‐enriched patterns; however, both types have similar positive Ce and negative Eu anomalies. 176Hf/177Hf ratios in the overgrowth rims from the metatexite are more variable and generally lower than values from zircon in the diatexite. Based on U–Pb ages, trace element and Hf isotope data, the zircon rims in the metatexite are interpreted to have crystallized from a locally derived melt, following partial dissolution of inherited protolith zircon during anatexis, whereas the zircon in the diatexite is interpreted to have crystallized from a melt that included an externally derived component. By integrating zircon and petrographic data for the migmatites and pelitic gneiss, the metatexite migmatite is interpreted to have formed by in situ partial melting in which the melt did not migrate from the source, whereas the diatexite migmatite included an externally derived juvenile component. The Cretaceous high‐temperature metamorphism of the Higo metamorphic terrane is interpreted to reflect emplacement of mantle‐derived basalts under a volcanic arc along the eastern margin of the Eurasian continent and advection of heat via hybrid silicic melts from the lower crust. Post‐peak crystallization of anatectic melts in a high‐T region at mid‐crustal depths occurred in the interval c. 116–110 Ma, as indicated by the difference in zircon ages from the metatexite and diatexite migmatites.  相似文献   

16.
Dating ultra‐high–pressure (UHP) metamorphic rocks provides important timing constraints on deep subduction zone processes. Eclogites, deeply subducted rocks now exposed at the surface, undergo a wide range of metamorphic conditions (i.e. deep subduction and exhumation) and their mineralogy can preserve a detailed record of chronologic information of these dynamic processes. Here, we present an approach that integrates multiple radiogenic isotope systems in the same sample to provide a more complete timeline for the subduction–collision–exhumation processes, based on eclogites from the Dabie–Sulu orogenic belt in eastern China, one of the largest UHP terranes on Earth. In this study, we integrate garnet Lu–Hf and Sm–Nd ages with zircon and titanite U–Pb ages for three eclogite samples from the Sulu UHP terrane. We combine this age information with Zr‐in‐rutile temperature estimates, and relate these multiple chronometers to different P–T conditions. Two types of rutile, one present as inclusions in garnet and the other in the matrix, record the temperatures of UHP conditions and a hotter stage, subsequent to the peak pressure (‘hot exhumation') respectively. Garnet Lu–Hf ages (c. 238–235 Ma) record the initial prograde growth of garnet, while coupled Sm–Nd ages (c. 219–213 Ma) reflect cooling following hot exhumation. The maximum duration of UHP conditions is constrained by the age difference of these two systems in garnet (c. 235–220 Ma). Complementary zircon and titanite U–Pb ages of c. 235–230 Ma and c. 216–206 Ma provide further constraints on the timing of prograde metamorphism and the ‘cold exhumation' respectively. We demonstrate that timing of various metamorphic stages can thus be determined by employing complementary chronometers from the same samples. These age results, combined with published data from adjacent areas, show lateral diachroneity in the Dabie–Sulu orogeny. Three sub‐blocks are thus defined by progressively younger garnet ages: western Dabie (243–238 Ma), eastern Dabie–northern Sulu (238–235 Ma) and southern Sulu terranes (225–220 Ma), which possibly correlate to different crustal slices in the recently proposed subduction channel model. These observed lateral chronologic variations in a large UHP terrane can possibly be extended to other suture zones.  相似文献   

17.
Small oval‐shaped, unshielded monazite grains found in a Variscan garnet–muscovite‐bearing mylonitic paragneiss from the Liegendserie unit of the Münchberg Metamorphic Complex in the northwestern Bohemian Massif, central Europe, yield only pre‐Variscan ages. These ages, determined with the electron microprobe, have maxima at c. 545, 520 and 495 Ma and two side‐maxima at 455 and 575 Ma, and are comparable with previously determined ages of detrital zircon reported from paragneisses elsewhere in the NW Bohemian Massif. The pressure (P)–temperature (T) history of this mylonitic paragneiss, determined from contoured P–T pseudosections, involved an initial stage at 6 kbar/600 °C, reaching peak P–T conditions of 12.5 kbar/670 °C with partial melting, followed by mylonitization and retrogression to 9 kbar/610 °C. The monazite, representing detrital grains derived from igneous rocks of a Cadomian provenance between 575 and 455 Ma, has survived these Variscan metamorphic/deformational events unchanged because this mineral has probably never been outside its P–T stability field during metamorphism.  相似文献   

18.
The P–T–t path of high‐P metamorphic rocks in subduction zones may reveal valuable information regarding the tectonic processes along convergent plate boundaries. Herein, we present a detailed petrological, pseudosection modelling and radiometric dating study of several amphibole schists of oceanic affinity from the Lhasa Block, Tibet. The amphibole schists experienced an overall clockwise P–T path that was marked by post‐Pmax heating–decompression and subsequent isothermal decompression following the attainment of peak high‐P and low‐T conditions (~490°C and 1.6 GPa). Pseudosection modelling shows that the amphibole schists underwent water‐unsaturated conditions during prograde metamorphism, and the stability field of the assemblage extends to lower temperatures and higher pressures within the water‐unsaturated condition relative to water‐saturated model along the prograde path. The high‐P amphibole schists were highly reduced during retrograde metamorphism. Precise evaluation of the ferric iron conditions determined from the different compositions of epidote inclusions in garnet and matrix epidote is crucial for a true P–T estimate by garnet isopleth thermobarometry. Lu–Hf isotope analyses on garnet size separates from a garnet‐bearing amphibole schist yield four two‐point garnet–whole‐rock isochron ages from 228.2 ± 1.2 Ma to 224.3 ± 1.2 Ma. These Lu–Hf dates are interpreted to constrain the period of garnet growth and approximate the timing of prograde metamorphism because of the low peak metamorphic temperature of the rock and the well‐preserved Mn/Lu growth zoning in garnet. The majority of zircon U–Pb dates provide no constraints on the timing of metamorphism; however, two concordant U–Pb dates of 222.4 ± 3.9 Ma and 223.3 ± 4.2 Ma were obtained from narrow and uncommon metamorphic rims. Coexistence of zircon and sphene in the samples implies that the metamorphic zircon growth was likely assisted by retrogression of rutile to sphene during exhumation. The near coincident radiometric dates of zircon U–Pb and garnet Lu–Hf indicate rapid burial and exhumation of the amphibole schists, suggesting a closure time of c. 224–223 Ma for the fossil ocean basin between the northern and southern Lhasa blocks.  相似文献   

19.
The allochthonous Cabo Ortegal Complex (NW Iberian Massif) contains a ~500 m thick serpentinite‐matrix mélange located in the lowest structural position, the Somozas Mélange. The mélange occurs at the leading edge of a thick nappe pile constituted by a variety of terranes transported to the East (present‐day coordinates; NW Iberian allochthonous complexes), with continental and oceanic affinities, and represents a Variscan suture. Among other types of metaigneous (calcalkaline suite dated at 527–499 Ma) and metasedimentary blocks, it contains close‐packed pillow‐lavas and broken pillow‐breccias with a metahyaloclastitic matrix formed by muscovite–paragonite–margarite–garnet–chlorite–kyanite–hematite–epidote–quartz–rutile. Pseudosection modelling in the MnCNTKFMASHO system indicates metamorphic peak conditions of ~17.5–18 kbar and ~550 °C followed by near‐isothermal decompression. This P–T evolution indicates subduction/accretion of an arc‐derived section of peri‐Gondwanan transitional crust. Subduction below the Variscan orogenic wedge evolved to continental collision with important dextral component. Closure of the remaining oceanic peri‐Gondwanan domain and associated release of fluid led to hydration of the overlying mantle wedge and the formation of a low‐viscosity subduction channel, where return flow formed the mélange. The submarine metavolcanic rocks were deformed and detached from the subducting transitional crust and eventually incorporated into the subduction channel, where they experienced fast exhumation. Due to the cryptic nature of the high‐P metamorphism preserved in its tectonic blocks, the significance of the Somozas Mélange had remained elusive, but it is made clear here for the first time as an important tectonic boundary within the Variscan Orogen formed during the late stages of the continental convergence leading to the assembly of Pangea.  相似文献   

20.
Proterozoic mafic dykes from the southwestern Vestfold Block experienced heterogeneous granulite facies metamorphism, characterized by spotted or fractured garnet‐bearing aggregates in garnet‐absent groundmass. The garnet‐absent groundmass typically preserves an ophitic texture composed of lathy plagioclase, intergranular clinopyroxene and Fe–Ti oxides. Garnet‐bearing domains consist mainly of a metamorphic assemblage of garnet, clinopyroxene, orthopyroxene, hornblende, biotite, plagioclase, K‐feldspar, quartz and Fe–Ti oxides. Chemical compositions and textural relationships suggest that these metamorphic minerals reached local equilibrium in the centre of the garnet‐bearing domains. Pseudosection calculations in the model system NCFMASHTO (Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) yield PT estimates of 820–870 °C and 8.4–9.7 kbar. Ion microprobe U–Pb zircon dating reveals that the NW‐ and N‐trending mafic dykes were emplaced at 1764 ± 25 and 1232 ± 12 Ma, respectively, whereas their metamorphic ages cluster between 957 ± 7 and 938 ± 9 Ma. The identification of granulite facies mineral inclusions in metamorphic zircon domains is also consistent with early Neoproterozoic metamorphism. Therefore, the southwestern margin of the Vestfold Block is inferred to have been buried to depths of ~30–35 km beneath the Rayner orogen during the late stage of the late Mesoproterozoic/early Neoproterozoic collision between the Indian craton and east Antarctica (i.e. the Lambert Terrane or the Ruker craton including the Lambert Terrane). The lack of penetrative deformation and intensive fluid–rock interaction in the rigid Vestfold Block prevented the nucleation and growth of garnet and resulted in the heterogeneous granulite facies metamorphism of the mafic dykes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号