首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Information on post-fire sediment and nutrient redistribution is required to underpin post-fire catchment management decisions. Fallout radionuclide budgets (210Pbxs, 137Cs and 7Be) were derived to quantify soil redistribution and sediment yield in forested terrain following a moderately severe wildfire in a small (89 ha) water supply catchment in SE Australia. Application of these techniques in burnt terrain requires careful consideration of the partitioning of radionuclides between organic and mineral soil components. Beryllium-7 and 210Pbxs were shown to be closely associated with ash, litter and soil organic matter whereas 137Cs was more closely associated with subsurface coarse mineral soil. Comparison of the three tracer budgets indicated that the dominant sediment source areas were ridgetops and steep valley sideslopes, from which burnt surface material was conveyed to the stream network via pre-existing gullies. Erosion was predominantly driven by sheetwash, enhanced by soil water repellency, and modified by bioturbation which both supplies subsurface sediment and provides sinks for erosive overland flow. Footslope and riparian zones were not important sediment source areas. The estimated event-based (wildfire and subsequent rainfall) sediment yield is 58 ± 25 t km− 2, based on fallout 7Be measurements. The upper estimate of total particulate phosphorus yield (0.70 kg ha− 1) is more than 10 times that at equivalent unburnt sites. This illustrates that, soon after fire, burnt eucalypt forest can produce nutrient loads similar to those of agricultural catchments. The tracer budgets indicate that wildfire is an important control on sediment and phosphorus inputs to the stream network over the decadal timeframe and the pulsed nature of this release is an important concern for water quality management.  相似文献   

2.
In catchments adjacent to the Great Barrier Reef World Heritage Area in Queensland, Australia, there is a growing concern that sediments and nutrients being exported from the land are having a detrimental effect on coral reef communities. There is a need to determine the processes and rates of erosion from the major land use types, so that management intervention can be initiated to reduce sediment yields where required. This paper presents a sediment budget for Weany Creek, a 13.5 km2 grazed semi-arid sub-catchment of the Burdekin River catchment, Australia. A range of field methods was used to measure erosion from hillslopes, gullies and stream banks, as well as identify the amount of sediment being deposited and remobilised on the bed of gullies and the stream network. The data suggests that at least during drought conditions, the primary erosion source in this catchment is gully erosion. However, the largest source of sediment in the budget is actually associated with the remobilisation of in-channel sediment stores. Overall, the sediment budget is comprised of  81% coarse material and 19% fine sediment and an agreement between the fine sediment yield estimated in the sediment budget and the yield measured at the catchment outlet is within 10%. The total sediment yield estimated for this catchment is  4205 t yr− 1 and is much lower than expected for a catchment of this size. This may reflect the drought conditions during the measurement period; however, there is also the possibility that the primary erosion sources have been exhausted, and the rates of sediment loss may be much lower now than they may have been in the past. Nonetheless, the results show that stored sediment, which may have been deposited in the channel many decades ago, is an important contributor to end of catchment sediment yields and warrants further investigation.  相似文献   

3.
In the Mediterranean area, forest fires have become a first-order environmental problem. Increased fire frequency progressively reduces ecosystem recovery periods. The fire season, usually followed by torrential rains in autumn, intensifies erosion processes and increases desertification risk. In this work, the effect of repeated experimental fires on soil response to water erosion is studied in the Permanent Field Station of La Concordia, Valencia, Spain. In nine 80 m2 plots (20 m long × 4 m wide), all runoff and sediment produced were measured after each rainfall event. In 1995, two fire treatments with the addition of different biomass amounts were applied. Three plots were burned with high fire intensity, three with moderate intensity, and three were unburned to be used as control. In 2003, the plots with the fire treatments were burned again with low fire intensities. During the 8-year interval between fires, plots remained undisturbed, allowing regeneration of the vegetation–soil system. Results obtained during the first 5 months after both fire experiments show the high vulnerability of the soil to erosion after a repeated fire. For the burned plots, runoff rates increased three times more than those of 1995, and soil losses increased almost twice. The highest sediment yield (514 g m− 2) was measured in 2003, in the plots of the moderate fire intensity treatment, which yielded only 231 g m− 2 of sediment during the corresponding period in 1995. Runoff yield from the control plots did not show significant temporal changes, while soil losses decreased from 5 g m− 2 in the first post-fire period to 0.7 g m− 2 in the second one.  相似文献   

4.
A large spatial variability in sediment yield was observed from small streams in the Ecuadorian Andes. The objective of this study was to analyze the environmental factors controlling these variations in sediment yield in the Paute basin, Ecuador. Sediment yield data were calculated based on sediment volumes accumulated behind checkdams for 37 small catchments. Mean annual specific sediment yield (SSY) shows a large spatial variability and ranges between 26 and 15,100 Mg km− 2 year− 1. Mean vegetation cover (C, fraction) in the catchment, i.e. the plant cover at or near the surface, exerts a first order control on sediment yield. The fractional vegetation cover alone explains 57% of the observed variance in ln(SSY). The negative exponential relation (SSY = a × eb C) which was found between vegetation cover and sediment yield at the catchment scale (103–109 m2), is very similar to the equations derived from splash, interrill and rill erosion experiments at the plot scale (1–103 m2). This affirms the general character of an exponential decrease of sediment yield with increasing vegetation cover at a wide range of spatial scales, provided the distribution of cover can be considered to be essentially random. Lithology also significantly affects the sediment yield, and explains an additional 23% of the observed variance in ln(SSY). Based on these two catchment parameters, a multiple regression model was built. This empirical regression model already explains more than 75% of the total variance in the mean annual sediment yield. These results highlight the large potential of revegetation programs for controlling sediment yield. They show that a slight increase in the overall fractional vegetation cover of degraded land is likely to have a large effect on sediment production and delivery. Moreover, they point to the importance of detailed surface vegetation data for predicting and modeling sediment production rates.  相似文献   

5.
The Holocene sediments of two catchments in the southern Upper Rhine valley have been quantified as part of the German LUCIFS Programme (RheinLUCIFS), which aims to quantify sediment fluxes in the Rhine catchment since the onset of agriculture in the Neolithic about 7500 years ago.The spatial distribution of the alluvial and colluvial sediments was derived using geological maps, with information on the thickness of these sediments from various sources including auger profiles and data from excavations. The sediments were subdivided into characteristic sedimentary storage types according to the different types of landscapes. For each of the sedimentary storage types an average thickness was assessed so that an integral sediment balance for the Holocene could be derived.For the different types of landscapes in the study area, 32 Holocene sedimentary storage types were determined, 21 in the Elz catchment (1500 km2) and 11 in the Möhlin catchment (230 km2). By adding up the sediment volumes of all single sedimentary storage types the total Holocene sediment volumes for the two catchments were calculated. Erosion depths were determined by dividing the sediment volumes through the potential erosion areas (slope > 2%) and by assuming a sediment delivery ratio (SDR) between 0 and 0.4. The total erosion for the potential erosion areas during the Holocene was calculated as 31–61 cm in the Elz catchment and 44–79 cm in the Möhlin catchment.  相似文献   

6.
Rivers draining to the Great Barrier Reef are receiving increased attention with the realisation that European land use changes over the last  150 years may have increased river sediment yields, and that these may have adversely affected the reef environment. Mitigation of the effects associated with such changes is only possible if information on the spatial provenance and dominant types of erosion is known. To date, very few field-based studies have attempted to provide this information. This study uses fallout radionuclide (137Cs and 210Pbex) and geochemical tracing of river bed and floodplain sediments to examine sources over the last  250 years for Theresa Creek, a subcatchment of the Fitzroy River basin, central Queensland, Australia. A Monte Carlo style mixing model is used to predict the relative contribution of both the spatial (geological) sources and erosion types. The results indicate that sheetwash and rill erosion from cultivated basaltic land and channel erosion from non-basaltic parts of the catchment are currently contributing most sediment to the river system. Evidence indicates that the dominant form of channel erosion is gully headcut and sidewall erosion. Sheetwash and rill erosion from uncultivated land (i.e., grazed pasture/woodland) is a comparatively minor contributor of sediment to the river network. Analysis of the spatial provenance of floodplain core sediments, in conjunction with optical dating and 137Cs depth profile data, suggests that a phase of channel erosion was initiated in the late nineteenth century. With the development of land underlain by basalt in the mid-twentieth century the dominant source of erosion shifted to cultivated land, although improvements in land management practices have probably resulted in a decrease in sediment yield from cultivated areas in the later half of the twentieth century. On a basin-wide scale, because of the limited spatial extent of cultivation, channel sources are likely to be the largest contributor of sediment to the Fitzroy River. Accordingly, catchment management measures focused on reducing sediment delivery to the Great Barrier Reef should focus primarily on decreasing erosion from channel sources.  相似文献   

7.
Understanding and quantifying sediment load is important in catchments draining highly erodible materials that eventually contribute to siltation of downstream reservoirs. Within this context, the suspended sediment transport and its temporal dynamics have been studied in the River Isábena (445 km2, south-central Pyrenees, Ebro basin) by means of direct sampling and turbidity recording during a 3-year dry period. The average flood-suspended sediment concentration was 8 g l− 1, with maximum instantaneous values above 350 g l− 1. The high scatter between discharge and suspended sediment concentrations (up to five orders of magnitude) has not permitted the use of rating curve methods to estimate the total load. Interpolation techniques yielded a mean annual sediment load of 184,253 t y− 1 for the study period, with a specific yield of 414 t km− 2 y− 1. This value resembles those reported for small torrents in nearby mountainous environments and is the result of the high connectivity between the badland source areas and stream courses, a fact that maximises sediment conveyance through the catchment. Floods dominated the sediment transport and yield. However, sediment transport was more constant through time than that observed in Mediterranean counterparts; this can be attributed to the role of base flows that entrain fine sediment temporarily stored in the channel and force the river to carry high sediment concentrations (i.e., generally in the order of 0.5 g l− 1), even under minimum flow conditions.  相似文献   

8.
Slope–channel coupling and in-channel sediment storage can be important factors that influence sediment delivery through catchments. Sediment budgets offer an appropriate means to assess the role of these factors by quantifying the various components in the catchment sediment transfer system. In this study a fine (< 63 µm) sediment budget was developed for a 1.64-km2 gullied upland catchment in southeastern Australia. A process-based approach was adopted that involved detailed monitoring of hillslope and bank erosion, channel change, and suspended sediment output in conjunction with USLE-based hillslope erosion estimation and sediment source tracing using 137Cs and 210Pbex. The sediment budget developed from these datasets indicated channel banks accounted for an estimated 80% of total sediment inputs. Valley floor and in-channel sediment storage accounted for 53% of inputs, with the remaining 47% being discharged from the catchment outlet. Estimated hillslope sediment input to channels was low (5.7 t) for the study period compared to channel bank input (41.6 t). However an estimated 56% of eroded hillslope sediment reached channels, suggesting a greater level of coupling between the two subsystems than was apparent from comparison of sediment source inputs. Evidently the interpretation of variability in catchment sediment yield is largely dependent on the dynamics of sediment supply and storage in channels in response to patterns of rainfall and discharge. This was reflected in the sediment delivery ratios (SDR) for individual measurement intervals, which ranged from 1 to 153%. Bank sediment supply during low rainfall periods was reduced but ongoing from subaerial processes delivering sediment to channels, resulting in net accumulation on the channel bed with insufficient flow to transport this material to the catchment outlet. Following the higher flow period in spring of the first year of monitoring, the sediment supplied to channels during this interval was removed as well as an estimated 72% of the sediment accumulated on the channel bed since the start of the study period. Given the seasonal and drought-dependent variability in storage and delivery, the period of monitoring may have an important influence on the overall SDR. On the basis of these findings, this study highlights the potential importance of sediment dynamics in channels for determining contemporary sediment yields from small gullied upland catchments in southeastern Australia.  相似文献   

9.
The sediment flux generated by postglacial channel incision has been calculated for the 2150 km2, non-glacial, Waipaoa catchment located on the tectonically active Hikurangi Margin, eastern North Island, New Zealand. Sediment production both at a sub-catchment scale and for the Waipaoa catchment as a whole was calculated by first using the tensioned spline method within ARC MAP to create an approximation of the aggradational Waipaoa-1 surface (contemporaneous with the Last Glacial Maximum), and second using grid calculator functions in the GIS to subtract the modern day surface from the Waipaoa-1 surface. The Waipaoa-1 surface was mapped using stereo aerial photography, and global positioning technology fixed the position of individual terrace remnants in the landscape. The recent discovery of Kawakawa Tephra within Waipaoa-1 aggradation gravels in this catchment demonstrates that aggradation was coincidental with or began before the deposition of this 22 600 14C-year-old tephra and, using the stratigraphic relationship of Rerewhakaaitu Tephra, the end of aggradation is dated at ca 15 000 14C years (ca 18 000 cal. years BP). The construction of the Waipaoa-1 terrace is considered to be synchronous and broadly correlated with aggradation elsewhere in the North Island and northern South Island, indicating that aggradation ended at the same time over a wide area. Subsequent downcutting, a manifestation of base-level lowering following a switch to postglacial incision at the end of glacial-age aggradation, points to a significant Southern Hemisphere climatic warming occurring soon after ca 15 000 14C years (ca 18 000 cal. years BP) during the Older Dryas interval. Elevation differences between the Waipaoa-1 (c.15 ka) terrace and the level of maximum channel incision (i.e. before aggradation since the turn of the 20th century) suggest about 50% of the topographic relief within headwater reaches of the Waipaoa catchment has been formed in postglacial times. The postglacial sediment flux generated by channel incision from Waipaoa catchment is of the order of 9.5 km3, of which ~ 6.6 km3 is stored within the confines of the Poverty Bay floodplain. Thus, although the postglacial period represented a time of high terrigenous sediment generation and delivery, only ~ 30% of the sediment generated by channel incision from Waipaoa catchment probably reached the marine shelf and slope of the Hikurangi Margin during this time. The smaller adjacent Waimata catchment probably contributed an additional 2.6 km3 to the same depocentre to give a total postglacial sediment contribution to the shelf and beyond of ~ 5.5 km3. Sediment generated by postglacial channel incision represents only ~ 25% of the total sediment yield from this landscape with ~ 75% of the estimated volume of the postglacial storage offshore probably derived from hillslope erosion processes following base-level fall at times when sediment yield from these catchments exceeded storage.  相似文献   

10.
Landscapes in southeastern Australia have changed dramatically since the spread of European colonisation in the 19th century. Due to widespread forest clearance for cultivation and grazing, erosion and sediment yields have increased by a factor of more than 150. In the 20th century, erosion and sediment yield were reduced again due to an increasing vegetative cover. Furthermore, during the last decades, thousands of small farm dams were constructed to provide drinking water for cattle. These dams trap a lot of sediment, thereby further reducing sediment delivery from hillslopes to river channels. Changes in sediment delivery since European colonisation are documented in sediment archives. Within this study, these changing rates in hillslope erosion and sediment delivery were modelled using a spatially distributed erosion and sediment delivery model (WATEM/SEDEM) that was calibrated for Australian ecosystems using sediment yield data derived from sedimentation rates in 26 small farm dams. The model was applied to the Murrumbidgee river basin (30,000 km2) under different land-use scenarios. First, the erosion and sediment yield under pre-European land-use was modelled. Secondly, recent land-use patterns were used in the model. Finally, recent land-use including the impact of farm dams and large reservoirs was simulated. The results show that the WATEM/SEDEM model is capable of predicting the intensity of the geomorphic response to changes in land-use through time. Changes in hillslope erosion and hillslope sediment delivery rates are not equal, illustrating the non-linear response of the catchment. Current hillslope sediment supply to the river channel network is predicted to be 370% higher compared to the pre-European settlement period, yet farm dams have reduced this back to 2.5 times the pre-19th century values. The role of larger reservoirs is even more important as they have reduced the current sediment supply downstream to their pre-European values, thus completely masking the increased hillslope erosion rates from land-use change. However, the model does so far not include valley widening and sediment storage in river systems. Therefore, modelled rates of sediment delivery are lower than observed values.  相似文献   

11.
The targeting of sediment management strategies is a key requirement in developing countries because of the limited resources available. Such targeting is, however, hampered by the lack of reliable information on catchment sediment sources. This paper reports the results of using a quantitative composite fingerprinting technique to estimate the relative importance of the primary potential sources within the upper Kaleya catchment (63 km2) in southern Zambia. During the study period (1997–9), the load-weighted mean relative contributions to the sediment load sampled at the catchment outlet were in the order: commercial cultivation (2.0%), bush grazing (17.1%), channel banks/gullies (17.2%) and communal cultivation (63.7%). Although influenced by the timing of sediment sample collection, these results are judged to provide a meaningful assessment of sediment sources in the Kaleya catchment. They indicate that improved environmental management strategies for the study area must be comprehensive and need to reduce surface erosion and hillslope/channel connectivity in areas of bush grazing and both communal and commercial cultivation and to control gully development.  相似文献   

12.
Wind erosion of soil is an appreciable but unstudied event following fires in cold desert. We examined aeolian transport of sediment for 1 year following fire in semi-arid shrub steppe on loess soils in southern Idaho, USA. Sediment collectors were used to determine horizontal mass transport of soil and saltation sensors and anemometers were used to determine saltation activity (fraction of time having saltation) and threshold wind speed in an area burned in August and an unburned control site. Horizontal mass transport (per 30-day period) was negligible in the unburned area, but in the burned area was 5.40 kg m?1 in October and decreased to 2.80 kg m?1 in November and 0.32 kg m?1 in December. Saltation activity was high enough to determine threshold wind speeds only in the burn site during fall, when values ranged from 10.0 to 10.6 m s?1. Sediment flux and saltation activity in the burned site became much less pronounced following the emergence of herbaceous vegetation in the spring. Post-fire sediment flux in the shrub steppe we examined was of greater magnitude but shorter duration than post-fire fluxes in warm deserts or sandier regions that experience more frequent wind erosion.  相似文献   

13.
The aim of this study was to evaluate four metrics to define the spatially variable (regionalised) hillslope sediment delivery ratio (HSDR). A catchment model that accounted for gully and streambank erosion and floodplain deposition was used to isolate the effects of hillslope gross erosion and hillslope delivery from other landscape processes. The analysis was carried out at the subcatchment (~ 40 km2) and the cell scale (400 m2) in the Avon-Richardson catchment (3300 km2), south-east Australia. The four landscape metrics selected for the study were based on sediment travel time, sediment transport capacity, flux connectivity, and residence time. Model configurations with spatially-constant or regionalised HSDR were calibrated against sediment yield measured at five gauging stations. The impact of using regionalised HSDR was evaluated in terms of improved model performance against measured sediment yields in a nested monitoring network, the complexity and data requirements of the metric, and the resulting spatial relationship between hillslope erosion and landscape factors in the catchment and along hillslope transects. The introduction of a regionalised HSDR generally improved model predictions of specific sediment yields at the subcatchment scale, increasing model efficiency from 0.48 to > 0.6 in the best cases. However, the introduction of regionalised HSDR metrics at the cell scale did not improve model performance. The flux connectivity was the most promising metric because it showed the largest improvement in predicting specific sediment yields, was easy to implement, was scale-independent and its formulation was consistent with sedimentological connectivity concepts. These properties make the flux connectivity metric preferable for applications to catchments where climatic conditions can be considered homogeneous, i.e. in small-medium sized basins (up to approximately 3000 km2 for Australian conditions, with the Avon-Richardson catchment being at the upper boundary). The residence time metric improved model assessment of sediment yields and enabled accounting for climatic variability on sediment delivery, but at the cost of greater complexity and data requirements; this metric might be more suitable for application in catchments with important climatic gradients, i.e. large basins and at the regional scale. The application of a regionalised HSDR metric did not increase data or computational requirements substantially, and is recommended to improve assessment of hillslope erosion in empirical, semi-lumped erosion modelling applications. However, more research is needed to assess the quality of spatial patterns of erosion depicted by the different landscape metrics.  相似文献   

14.
A new and simple method is developed to efficiently quantify erosion and deposition rates based on stock unearthing measurements. This is applicable to spatial scales ranging from plot to hillslopes, and to time scales ranging from single hydrologic events to centennial scales. The method is applied to a plot area on vineyard hillslopes in Burgundy (Monthélie, France), with measurement of 4328 vine plants. A sediment budget established at the plot scale shows a mean soil lowering of 3.44 ± 1 cm over 20 years, involving a minimal erosion rate of 1.7 ± 0.5 mm yr− 1. Locally, erosion rates can reach up to 8.2 ± 0.5 mm yr− 1.This approach allows the sediment redistribution to be mapped and analyzed at 1-m resolution. It provides novel insights into the characterization of erosion patterns on pluri-decennial scales and into the analysis of spatial distribution of erosion processes on cultivated hillslopes.  相似文献   

15.
Over the past decades, > 50,000 dams and reforestation on the Yangtze River (Changjiang) have had little impact on water discharge but have drastically altered annual and particularly seasonal sediment discharge. Before impoundment of the Three Gorges Dam (TGD) in June 2003, annual sediment discharge had decreased by 60%, and the hysteresis of seasonal rating curves in the upper reaches at Yichang station had shifted from clockwise to counterclockwise. In addition, the river channel in middle-lower reaches had changed from depositional to erosional in 2002.During the four years (2003–2006) after TGD impoundment, ~ 60% of sediment entering the Three Gorges Reservoir was trapped, primarily during the high-discharge months (June–September). Although periodic sediment deposition continues downstream of the TGD, during most months substantial erosion has occurred, supplying ~ 70 million tons per year (Mt/y) of channel-derived sediment to the lower reaches of the river. If sand extraction (~ 40 Mt/y) is taken into consideration, the river channel loses a total of 110 Mt/y. During the extreme drought year 2006, sediment discharge in the upper reaches drastically decreased to 9 Mt (only 2% of its 1950–1960s level) because of decreased water discharge and TGD trapping. In addition, Dongting Lake in the middle reaches, for the first time, changed from trapping net sediment from the mainstem to supplying 14 Mt net sediment to the mainstem. Severe channel erosion and drastic sediment decline have put considerable pressure on the Yangtze coastal areas and East China Sea.  相似文献   

16.
《Geomorphology》2007,83(1-2):152-182
This paper describes the application of a new instrument to continuously measure bedload transport, an impact sensor, to a 72 km2 test catchment in the Yorkshire Dales, northern England. Data from a network of impact sensors are linked to repeat surveys of channel morphological response, to get a better understanding of the conditions that lead to sediment generation and transfer. Results suggest certain areas of the catchment act as key sediment sources at the annual time scale, with material being quickly delivered to the lower parts of the catchment along the steep bedrock channel. Sediment transfer within the tributaries occurs in significantly smaller magnitudes than within the main channel; but it moves more frequently and at different times of the year, with transfer rates being strongly conditioned by larger-scale valley geomorphology. The lower 5.6 km reach sees a significant reduction in gradient and a widening of the valley. This permits significant accumulation within the channel, which has persisted for many years. This lower reach is very sensitive to changes in sediment supply and there is good agreement between changes in bedload transport data and the surveyed channel response. These observations have major implications for how river management projects should be developed in upland environments, especially those where large-scale geomorphological controls have a major impact upon the sediment transfer process. Evidence suggests that where river management restricts lateral movement of the channel and transfer of sediment into floodplain storage, changes in sediment supply can lead to areas of severe accumulation, acceleration of bank erosion and exacerbated flood risk.  相似文献   

17.
Cosmogenic nuclides produced in quartz may either decay or accumulate while sediment is moved through a river basin. A change in nuclide concentration resulting from storage in a floodplain is potentially important in large drainage basins in which sediment is prone to repeated burial and remobilization as a river migrates through its floodplain. We have modeled depth- and time-dependent cosmogenic nuclide concentration changes for 10Be, 26Al, and 14C during sediment storage and mixing in various active floodplain settings ranging from confined, shallow rivers with small floodplains to foreland-basin scale floodplains traversed by deep rivers. Floodplain storage time, estimated from channel migration rates, ranges from 0.4 kyr for the Beni River basin (Bolivia) to 7 kyr for the Amazon River basin, while floodplain storage depth, estimated from channel depth, ranges from 1 to 25 m.For all modeled active floodplain settings, the long-lived nuclides 10Be and 26Al show neither significant increase in nuclide concentration from irradiation nor decrease from decay. We predict a hypothetical response time after which changes in 10Be or 26Al concentrations become analytically resolvable. This interval ranges from 0.07 to 2 Myr and exceeds in all cases the typical residence time of sediment in a floodplain. Due to the much shorter half life of 14C, nuclide concentrations modeled for the in situ-produced variety of this nuclide are, however, sensitive to floodplain storage on residence times of < 20 kyr.The cosmogenic nuclide composition of old deposits in currently inactive floodplains that have been isolated for periods of millions of years from the river that once deposited them is predicted to either increase or decrease in 10Be and 26Al concentration, depending on the depositional depth. These conditions can be evaluated using the 26Al/10Be ratio that readily discloses the depth and duration of storage.We illustrate these models with examples from the Amazon basin. As predicted, modern bedload collected from an Amazon tributary, the Bolivian Beni River, shows no systematic change in nuclide concentration as sediment is moved through 500 km of floodplain by river meandering. In contrast, in the central Amazon floodplain currently untouched by the modern river system, low 26Al/10Be ratios account for minimum burial depths of 5 to 10 m for a duration of > 5 Myr.The important result of this analysis is that in all likely cases of active floodplains, cosmogenic 10Be and 26Al concentrations remain virtually unchanged over the interval sediment usually spends in the basin. Thus, spatially-averaged denudation rates of the sediment-producing area can be inferred throughout the entire basin, provided that nuclide production rates are scaled for the altitudes of the sediment-producing area only, because floodplain storage does not modify nuclide concentrations introduced from the sediment source area.  相似文献   

18.
The construction of multiple dams and barrages in many Indian River basins over the last few decades significantly reduced river flow to the sea and affected the sediment regime. More reservoir construction is planned through the proposed National River Linking Project (NRLP), which will transfer massive amounts of water from the North to the South of India. The impacts of these developments on fertile and ecologically sensitive deltaic environments are poorly understood and quantified at present. In this paper an attempt is made to identify, locate and quantify coastal erosion and deposition processes in one of the major river basins in India—the Krishna—using a time series of Landsat images for 1977, 1990 and 2001 with a spatial resolution ranging from 57.0 m to 28.5 m. The dynamics of these processes are analyzed together with the time series of river flow, sediment discharge and sediment storage in the basin. Comparisons are made with similar processes identified and quantified earlier in the delta of a neighboring similarly large river basin—the Godavari. The results suggest that coastal erosion in the Krishna Delta progressed over the last 25 years at the average rate of 77.6 ha yr− 1, dominating the entire delta coastline and exceeding the deposition rate threefold. The retreat of the Krishna Delta may be explained primarily by the reduced river inflow to the delta (which is three times less at present than 50 years ago) and the associated reduction of sediment load. Both are invariably related to upstream reservoir storage development.  相似文献   

19.
The paper presents the sediment budget of the Isábena basin, a highly dynamic 445-km2 catchment located in the Central Pyrenees that is patched by highly erodible areas (i.e., badlands). The budget for the period 2007-2009 is constructed following a methodology that allows the interpolation of intermittent measurements of suspended sediment concentrations and enables a subsequent calculation of sediment loads. Data allow specification of the contribution of each subbasin to the water and sediment yield in the catchment outlet. Mean annual sediment load was 235,000 t y− 1. Specific sediment yield reached 2000 t km− 2 y− 1, a value that indicates very high sedimentary activity, especially in the case of Villacarli and Lascuarre subcatchments, were most badlands are located. The specific sediment yield obtained for the entire Isábena is 527 t km− 2 y− 1, a high value for such a mesoscale basin. Results show that a small part of the area (i.e., 1%) controls most of the catchment's gross sediment contribution. Sediment delivery ratio (ratio between sediment input from primary sources and basin export) has been estimated at around 90%, while in-channel storage represents the 5% of the annual load on average. The high connectivity between sediment sources (i.e., badlands) and transfer paths (i.e., streamcourses) exacerbates the influence of the local sediment production on the catchment's sediment yield, a quite unusual fact for a basin of this scale.  相似文献   

20.
In-stream macrophytes are typically abundant in nutrient-rich chalk streams during the spring and summer months and modify the in-stream environment by altering river flows and trapping sediments. We present results from an inter-disciplinary study of two river reaches in the River Frome catchment, Dorset (UK). The investigation focused on how Ranunculus (water crowfoot), the dominant submerged macrophyte in the study reaches, modified patterns of flow and sediment deposition. Measurements were taken on a monthly basis throughout 2003 to determine seasonal patterns in macrophyte cover, associated changes in the distributions of flow velocities and the character and amount of accumulated fine sediment within stands of Ranunculus.Maximum in-stream cover of macrophytes exceeded 70% at both sites. Flow velocities were less than 0.1 m s− 1 within the stands of Ranunculus and accelerated to 0.8 m s− 1 outside the stands. During the early stages of the growth of Ranunculus, fine sediment mostly accumulated within the upstream section of the plant but the area of fine sediment accumulation extended into the downstream trailing section of the plant later in the growing season. The fine sediment accumulations were dominated by sand (63–1000 μm) with silts and clays (0.37–63 μm) comprising < 10% by volume. The content of organic matter in the accumulated sediments varied within stands, between reaches and through the growing season with values ranging between 9 and 105 mg g− 1 dry weight. At the reach scale the two sites exhibited different growth forms of Ranunculus which created distinctive patterns of flow and fine sediment deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号