共查询到15条相似文献,搜索用时 46 毫秒
1.
计算子午线弧长除了采用经典的级数展开算法之外,还可通过数值积分与常微分方程数值解法进行求解。为评价各种算法的精度,本文选取大地纬度自0°-90°、间隔距离为1°、1'、1″的3组样本数据,分别基于传统算法、数值积分算法和常微分方程数值算法3大类11种算法计算得到各组样本所对应的子午线弧长结果,并从算法精度和运算速度两个方面对各种数值算法进行了分析与评价。实例表明三阶、四阶Runge-Kutta算法不仅精度高,而且运算效率是其他算法的2倍多,研究结果为计算子午线弧长的提供了有效的算法模型。 相似文献
2.
计算子午线弧长的数值积分法 总被引:4,自引:0,他引:4
应用数值积分原理,提出一种子午线弧长正反算的计算方法。该方法计算原理简单,计算稳定性好,便于计算机编程实现,可以达到给定的计算精度。 相似文献
3.
椭球子午线弧长计算的新方法 总被引:7,自引:0,他引:7
根据子午线弧长的计算原理,推导出一个新的子午线弧长计算实用公式。采用新公式计算由赤道到纬度φ的子午线弧长时,在计算效果及计算精度分析方面比传统公式更加直观、准确。 相似文献
4.
计算子午线弧长与底点纬度本质上是解算标准的一阶常微分方程。为了研究利用常微分方程数值解法进行子午线弧长与底点纬度计算的可行性与可靠性,选取大地纬度自0°起以步长1″依次增大至90°,共计324 001个样本数据,分别基于求解常微分方程的Euler算法、改进的Euler算法以及二阶、三阶、四阶Runge-Kutta算法对其进行了数值计算。并与传统算法结果进行比较,从数值算法结果的精度、运算速度、自洽程度等方面对数值算法质量进行评价。计算结果表明:利用常微分方程数值解法求解子午线弧长与底点纬度的方法,能够得到与传统算法精度一致的结果;且数值算法运算速度大约是传统算法的2倍,其中四阶Runge-Kutta算法的精度与自洽程度最高。这表明,常微分方程数值解法比传统算法更适用于子午线弧长和底点纬度的大数据计算。 相似文献
5.
6.
7.
由子午线弧长和球面梯形面积反算纬度的方法 总被引:1,自引:0,他引:1
提出了由子午线弧长Sm和球面梯形面积F反算纬度φ的原理和方法,给出了CASIO fx4800P计算器的反算程序,并用实例检验了该方法的正确性和可靠性。 相似文献
8.
子午线弧长的解析型幂级数确定 总被引:6,自引:1,他引:6
针对子午线弧长反解计算过于繁琐的问题,文中利用复合函数的求导法则 ,变换变量进行幂级数展开,在近似情况下给出了通项公式,并严密推导了幂级数展开式,又设定子午线弧长反解公式的形式,利用Hermite插值原理得出各参数。用各方法得出的公式全部采用e^2的幂级数形式给出,可操作性,可重复性、唯一性都比较好,经试算其精度在千分之一秒以上,可提供实际使用。 相似文献
9.
针对子午线弧长反解计算过于繁琐的问题,利用复合函数的求导法则,变换变量进行幂级数展开,给出了通项公式,利用Hermite插值原理推导了各参数,借助Mathematica计算机代数系统,得出了这些公式用偏心率e表示的幂级数表达式。经试算其精度在0.001″以上,可供实际使用。 相似文献
10.
11.
利用偏微分方程抑制图像噪声已经被认为是具有显著效果的图像去噪技术.在阐述图像噪声模型的基础上研究了图像去噪的偏微分方程模型,并对偏微分方程中的参数选择进行了讨论.为了保持图像的边缘信息,对经典模型参数进行了改进.实验结果表明,偏微分方程适用于图像噪声的抑制,并且可以在抑制图像噪声的同时,保持较好的边缘信息. 相似文献
12.
13.
14.