首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spinel lherzolite xenoliths found in Boeun, Korea, have protogranular to porphyroclastic textures and are enclosed in a Miocene alkali basalt. The lithium concentration and isotopic compositions of olivine, clinopyroxene, and orthopyroxene separates from the spinel lherzolite, and whole rocks of the spinel lherzolites and alkali basalt were determined by inductively coupled plasma mass spectrometry (ICP-MS) and multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The lithium concentrations of the olivines and orthopyroxenes range from 2.2 to 5.0 ppm and from 2.1 to 6.4 ppm, respectively. In contrast, the clinopyroxenes have larger lithium concentrations, from 2.0 to 8.4 ppm, which reflect their preferential lithium enrichment. The lithium isotopic compositions (δ7Li) of olivines (-5.4 to + 3.5‰), orthopyroxenes (-11.4 to -0.1‰), and clinopyroxenes (-14.4 to -4.7‰) range far beyond the average mantle composition of + 4 ± 2‰. The lithium isotopic composition of the host rock, alkali basalt (3.4‰), is within the range of the intraplate and oceanic island basalts. The spinel lherzolites from Boeun exhibits strong elemental and isotopic disequilibria due to the different lithium and lithium isotope diffusion velocities in the olivine, orthopyroxene, and clinopyroxene minerals after eruption and magma cooling.  相似文献   

2.
This paper presents new data on chromium mineralization in a fenitized xenolith in Mt. Kaskasnyunchorr in the Khibiny alkaline massif (Kola Peninsula, Russia) and summarizes data on Cr mineralogy in the Khibiny Mountains. Protolith silicates that contained Cr3+ admixture are believed to be the source of this element in the fenite. Cr-bearing (maximum Cr2O3 concentrations, wt %, are in parentheses) aegirine (5.8), crichtonite-group minerals (2.1), muscovite (1.3), zirconolite (1.1), titanite (1.0), fluorine-magnesioarfvedsonite (0.8), biotite (0.8), ilmenite (0.6), and aenigmatite (0.6) occur in the fenite. The late-stage spinellides of the FeTi-chromite-CrTi-magnetite series, which are very poor in Mg and Al and which formed after Crrich aegirine and ilmenite, are the richest in Cr (up to 42% Ct2O3). Cr concentrations grew with time during the fenitization process. Unlike minerals in the Khibiny ultramafic rocks where Cr is associated with Mg, Al (it is isomorphic with Cr), and with Ca, chromium in the fenites is associated with Fe, Ti, and V (with which Cr3+ is isomorphic) and with Na in silicate minerals. Cr3+ Mobility of Cr3+ and the unique character of chromium mineralization in the examined fenites were caused by high alkalinity of the fluid.  相似文献   

3.
Eight catchments, an area of 15 to 35 km2, have been studied within an ecogeochemical mapping programme in the western Kola Peninsula and contiguous parts of Finland and Norway. Three catchments, one northeast of Zapolyarniy (1) and two, 5 and 25 km south of Monchegorsk (2 and 4) show high levels of deposition of heavy metals, especially nickel (Ni) and copper (Cu), related to the metallurgical industry in these cities. Twenty-five topsoil samples, from sites evenly distributed over catchment 2, have mean contents of Ni and Cu 1 to 2 orders of magnitude higher than both C-horizon samples from the same sites and topsoil samples from catchment 4, providing strong evidence for the anthropogenic origin of the heavy metals. The same samples show geometric mean total contents for the noble metals analysed of: 1.4 μg/kg rhodium (Rh), 49.6 μg/kg platinum (Pt), 187.6 μg/kg palladium (Pd) and 9.5 μg/kg gold (Au). The pattern of concentration of the noble metals mirrors that found in published averages for ore from the Talnakh mineralizations in the Noril'sk province, though 1–2 orders of magnitude lower. This also clearly shows that the noble-metal contents of the topsoil are anthropogenic, and suggests that they emanate from the plants in Monchegorsk at an early stage in treatment of the ore, probably as a minor component of Ni-Cu rich particles. The noble-metal geochemistry of the topsoil in the other catchments also reflects the nature of the ore being processed at the plants nearby.  相似文献   

4.
Clinopyroxene-rich, poorly metasomatised spinel lherzolites are rare worldwide but predominate among xenoliths in five Quaternary basaltic eruption centres in Tariat, central Mongolia. High-precision analyses of the most fertile Tariat lherzolites are used to evaluate estimates of primitive mantle compositions; they indicate Mg#PM = 0.890 while lower Mg# in the mantle are likely related to metasomatic enrichments in iron. Within a 10 × 20 km area, and between ~45 and ≥60 km depth, the sampled xenoliths suggest that the Tariat mantle does not show km-scale chemical heterogeneities and mainly consists of residues after low-degree melt extraction at 1–3 GPa. However, accessory (<1%) amphibole and phlogopite are unevenly distributed beneath the eruption centres. Ca abundances in olivine are controlled by temperature whereas Al and Cr abundances also depend on Cr/Al in coexisting spinel. Comparisons of conventional and high-precision analyses obtained for 30 xenoliths show that high-quality data, in particular for whole-rocks and olivines, are essential to constrain the origin of mantle peridotites. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Orthopyroxene-rich olivine websterite xenoliths (OWB2) in Palaeogene basanites in East Serbia are mostly composed of tabular low-Al2O3 orthopyroxene (> 70 vol.%, Mg# 85–87) containing tiny Cr spinel inclusions. Orthopyroxene shows a slightly U-shaped primitive mantle-normalized trace element pattern with strong peaks at U and Pb, similar to that of orthopyroxene from normal regional peridotitic mantle. In between the orthopyroxenes are interstitial spaces composed of partially altered olivine (Mg# 85–87), clinopyroxene, Ti-rich spinel, Mg-bearing calcite, K-feldspar, apatite, ilmenite and relicts of a hydrous mineral. Clinopyroxene appears as selvages around orthopyroxene and as coarser euhedral crystals. Trace element patterns of the clinopyroxene selvages resemble those of adjacent orthopyroxene, whereas the coarser ones have flatter and more LREE- and LILE-enriched patterns, similar to that of metasomatic clinopyroxene. The OWB2 xenoliths are interpreted as having formed in two stages. During Stage I orthopyroxene crystallized, along with some spinel, olivine and probably hydrous phase(s). This original OWB2 lithology was a hydrous olivine-bearing orthopyroxenite that crystallised from subduction-related SiO2-saturated, boninite-like magmas. During Stage II the interstitial minerals formed due to infiltration of a low-SiO2, high-CaO and CO2-rich external melt, accompanied by decomposition of original H2O-bearing minerals. The calculated composition of the infiltrating liquid corresponds to a mafic alkaline melt similar to the basanitic host but more enriched in CO2, LREE and LILE. Metasomatism is interpreted in terms of small degree melts related to the Palaeogene mafic alkaline magmatism.  相似文献   

6.
7.
A sediment core from Chuna Lake (Kola Peninsula, northwest Russia) was studied for pollen, diatoms and sediment chemistry in order to infer post‐glacial environmental changes and to investigate responses of the lake ecosystem to these changes. The past pH and dissolved organic carbon (DOC) of the lake were inferred using diatom‐based transfer functions. Between 9000 and 4200 cal. yr BP, slow natural acidification and major changes in the diatom flora occurred in Chuna Lake. These correlated with changes in regional pollen, the arrival of trees in the catchment, changes in erosion, sediment organic content and DOC. During the past 4200 yr diatom‐based proxies showed no clear response to changes in vegetation and erosion, as autochthonous ecological processes became more important than external climate influences during the late Holocene. The pollen stratigraphy reflects the major climate patterns of the central Kola Peninsula during the Holocene, i.e. a climate optimum between 9000 and 5400/5000 cal. yr BP when climate was warm and dry, and gradual climate cooling and an increase in moisture during the past 5400/5000 yr. This agrees with the occurrence of the north–south humidity gradient in Fennoscandia during the Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
本文对华北克拉通三个不同地区(河北汉诺坝、内蒙古集宁三义堂、河南鹤壁)新发现的含金云母尖晶石二辉橄榄岩和尖晶石橄榄单斜辉石岩捕虏体进行了详细的矿物组成、单斜辉石的微量元素和Sr-Nd同位素研究.通过与相同地区不含金云母尖晶石二辉橄榄岩捕虏体的系统对比发现通常含金云母的地幔橄榄岩比不含金云母的地幔橄榄岩岩富Al2O3、CaO、NaO、K2O、TiO2,但相对贫镁;其单斜辉石的LREE更为富集,但Sr、Nd同位素组成则相对亏损.这说明地幔交代作用不仅能够造成地幔橄榄岩的玄武质组分和稀土元素的富集,而且亦能够造成全岩和橄榄石Mg#的降低和同位素组成的相对亏损.捕虏体的Rb-Sr等时线年龄暗示地幔交代作用发生在中、新生代;其交代熔体来源于软流圈.同时说明华北新生代岩石圈地幔普遍存在的主、微量元素和同位素组成类似于“大洋型”岩石圈地幔的特征很可能是岩石圈地幔橄榄岩与软流圈来源的熔体的大规模反应的结果,而非真正意义上的新增生的岩石圈地幔.  相似文献   

9.
Studies of the mantle-derived iherzolites from Nushan show that in addition to CO2,there were present H2O and small amounts of CO, CH4, SO2,Cl and F in the initial mantlc fluids derived fron the asthenospheric mantlc plumc .The imitial fluids accumulated in some regions of the mantle, resulting in lowering of the mantle solidus (and liquidus) and partial melting of the upper mantle. Melts formed from low-degree of fluid-involved partial melting of the upper mantle would be highly enriched in incompatible elements.Fluies and melts are allthe metasomatic agents for mantle metasomatism, and the interaction between them and the depleted mantle could result in the substan-tial local enrichment of LREE and incompatible elements in the latter.In case that the concentration of H2O in the fluids (and melts) is lower ,only cryptic metasomatism would occur, in case that the concentration of H2O is higher,the degree of partial melting would be higher and hydrous metasomatic phases(e.g. amphiboles )would nucleate. Under such circumstances, there would occur model metasomatism.  相似文献   

10.
赵勇伟  樊祺诚 《岩石学报》2011,27(10):2833-2841
大兴安岭哈拉哈河-绰尔河第四纪火山岩中含有尖晶石相和石榴石相橄榄岩捕虏体.本文报道的尖晶石相橄榄岩包括方辉橄榄岩和二辉橄榄岩两类,前者分布数量略高于后者.方辉橄榄岩多数具有较高的平衡温度(1072~1193℃),矿物化学成分变化大,含有高Mg橄榄石和高Cr#尖晶石,这些特征一致表明是古老岩石圈地幔残余的样品.而二辉橄榄岩显示相对均一的矿物化学成分和很宽的平衡温度变化范围(636~1178℃),代表了明显受到改造的岩石圈地幔,可能反映岩石圈地幔的不同深度和局部经历了软流圈与岩石圈相互作用.通过与华北克拉通的对比,发现地处兴蒙造山带的大兴安岭岩石圈地幔中仍保留有相当量的古老岩石圈地幔残余,区别于遭受强烈改造和破坏的华北克拉通东部地区的岩石圈地幔.  相似文献   

11.
Coarse-grained, granular spinel lherzolites xenoliths from the Premier kimberlite show evidence of melt extraction and metasomatic enrichment, documenting a complex history for the shallow mantle beneath the Bushveld complex. Compositions of orthopyroxene, clinopyroxene and spinel indicate equilibration within the spinel–peridotite facies of the upper mantle, at depths from 80 to 100 km and temperatures from 720 to 850 °C. Bulk compositions have lower Mg-number [atomic 100 Mg/(Mg + Fe*)] than previously studied spinel peridotites from Premier, and have higher Mg/Si than low-temperature coarse grained garnet lherzolites, suggesting shallower melting conditions or metasomatic enrichment. Clinopyroxene in one sample is highly LREE-depleted indicating very minor modification of a residue of 20% melt extraction, whereas the calculated REE pattern for a melt in equilibrium with a mildly LREE-depleted sample is similar to MORB or late Archean basalt, possibly related to the Bushveld Complex. Bulk and mineral compositions suggest minimal refertilization by silicate melts in four out of six samples, but REE patterns indicate introduction of a LIL-enriched component that may be related to kimberlite.  相似文献   

12.
Temperature estimates and chemical composition of mantle xenoliths from the Cretaceous rift system of NW Argentina (26°S) constrain the rift evolution and chemical and physical properties of the lithospheric mantle at the eastern edge of the Cenozoic Andean plateau. The xenolith suite comprises mainly spinel lherzolite and subordinate pyroxenite and carbonatized lherzolite. The spinel lherzolite xenoliths equilibrated at high-T (most samples >1000 °C) and P below garnet-in. The Sm–Nd systematics of compositionally unzoned clino- and orthopyroxene indicate a Cretaceous minimum age for the high-T regime, i.e., the asthenosphere/lithosphere thermal boundary was at ca. 70 km depth in the Cretaceous rift. Major elements and Cr, Ni, Co and V contents of the xenoliths range between values of primitive and depleted mantle. Calculated densities based on the bulk composition of the xenoliths are <3280 kg/m3 for the estimated PT conditions and indicate a buoyant, stable upper mantle lithosphere. The well-equilibrated metamorphic fabric and mineral paragenesis with the general lack of high-T hydrous phases did not preserve traces of metasomatism in the mantle xenoliths. Late Mesozoic metasomatism, however, is obvious in the gradual enrichment of Sr, U, Th and light to medium REE and changes in the radiogenic isotope composition of an originally depleted mantle. These changes are independent of the degree of depletion evidenced by major element composition. 143Nd/144Ndi ratios of clinopyroxene from the main group of xenoliths decrease with increasing Nd content from >0.5130 (depleted samples) to ca. 0.5127 (enriched samples). 87Sr/86Sri ratios (0.7127–0.7131, depleted samples; 0.7130–0.7134, enriched samples) show no variation with variable Sr contents. Pbi isotope ratios of the enriched samples are rather radiogenic (206Pb/204Pbi 18.8–20.6, 207Pb/204Pbi 15.6–15.7, 208Pb/204Pbi 38.6–47) compared with the Pb isotope signature of the depleted samples. The large scatter and high values of 208Pb/204Pbi ratios of many xenoliths indicates at least two Pb sources that are characterized by similar U/Pb but by different Th/Pb ratios. The dominant mantle type in the investigated system is depleted mantle according to its Sr and Nd isotopic composition with relatively radiogenic Pb isotope ratios. This mantle is different from the Pacific MORB source and old subcontinental mantle from the adjacent Brazilian Shield. Its composition probably reflects material influx into the mantle wedge during various episodes of subduction that commenced in early Paleozoic or even earlier. Old subcontinental mantle was already replaced in the Paleozoic, but some inheritance from old mantle lithosphere is represented by rare xenoliths with isotope signatures indicating a Proterozoic origin.  相似文献   

13.
We report here on cirque infills mapped in the Khibiny Mountains, Kola Peninsula, Russia. Cirque infills are morainic deposits located near the headwalls of valleys and cirques. Their location and shape, often with concave margins towards the valley side, indicate that they were deposited by ice flowing up‐valley, into the mountains, rather than by local glaciers. We suggest that they formed during the last deglaciation, when Khibiny was a nunatak and Fennoscandian ice sheet lobes extended into valleys and cirques of the massif. The formation of cirque infills is probably more related to ice sheet dynamic factors, occurring when the ice margin retreated from the cirques, than to climate‐driven interruption in the ice‐marginal retreat. Glacial conditions similar to those prevalent when the Khibiny cirque infills were formed, occur today in Antarctica where the ice sheets engulf nunatak ranges. In Heimefrontfjella, Antarctica, the formation of supraglacial moraines at the head of cirques are linked to blue‐ice conditions, indicating locally low accumulation rates, a dry continental climate and sublimation dominated ablation. We suggest that these Antarctic moraines are modern analogues of cirque infills on the Kola Peninsula, and possibly, that the cirque infills may be used as palaeoenvironmental indicators. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Several types of xenoliths occur in a Permian basanite sill in Fidra, eastern central Scotland. One group consists of spinel lherzolites, which have geochemical and isotopic characteristics similar to those of lithospheric upper mantle from elsewhere in western Europe, with both LREE-depleted and LREE-enriched compositions. A separate group comprises pyroxenites and wehrlites, some of which contain plagioclase; these have compositions and textures that indicate that they are cumulates from mafic magmas. In terms of Sr and Nd isotope compositions, the pyroxenites closely resemble the host basanite and most likely formed by high-pressure fractionation of Permo-Carboniferous alkaline magmas at lower crustal depths. They also have mantle-like δ18O values. A third group is composed of granulite xenoliths that vary between plagioclase-rich and clinopyroxene-rich compositions, some of which probably form a continuum with the pyroxenites and wehrlites. They are all LREE-enriched and most have positive Eu anomalies; thus, they are also mostly cumulates from mafic magmas. Many of the granulites also have Sr and Nd radiogenic isotope ratios similar to those of the host basanite, indicating that they have formed from a similar magma. However, several of the granulites show more enriched isotopic compositions, including higher δ18O values, trending towards an older crustal component. Thus, the pyroxenites and granulites are largely cogenetic and are mainly the product of a mafic underplating event that occurred during the widespread magmatism in central Scotland during Permo-Carboniferous times.  相似文献   

15.
Pollen and peat botanical investigations of the Lutnermayok peat bog, Kola Peninsula, northwestern Russia, were carried out, and 21 surface pollen samples were studied. Combined with previous studies our data form the basis for the vegetation history over the last 7000 yr of the Khibiny Mountains. Pinus sylvestris was the dominant species between 7000 and 5000 yr BP and Picea obovata penetrated to the Khibiny Mountains ca. 5500/5300 yr BP. Since 4500 yr BP, Picea replaced Pinus in major parts of the area and dominated the forest cover. Picea immigrated to the Kola Peninsula after 7000 yr BP. There were two paths of spruce migration: from the southeast and the southwest. Grey alder, Alnusincana, immigrated to the Kola Peninsula from the southwest and northwest about ca. 8000 yr BP. Grey alder has been restricted to its modern range since 4000 yr BP. The range of vertical movement of the treeline in Khibiny Mountains during the last 700 yr was 240–260 m, which corresponds to an amplitude of summer temperature change of 2°C. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
We provide petrographic, major and trace element data for over 30 spinel peridotite xenoliths from the Tokinsky Stanovik (Tok) volcanic field on the Aldan shield to characterize the lithospheric mantle beneath the south-eastern margin of the Siberian craton, which formed in the Mesoproterozoic. High equilibration temperatures (870–1,010°C) of the xenoliths and the absence of garnet-bearing peridotites indicate a much thinner lithosphere than in the central craton. Most common among the xenoliths are clinopyroxene-poor lherzolites and harzburgites with Al2O3 and CaO contents nearly as low as in refractory xenoliths from kimberlite pipes (Mir, Udachnaya) in the central and northern Siberian craton. By contrast, the Tok peridotites have higher FeO, lower Mg-numbers and lower modal orthopyroxene and are apparently formed by shallow partial melting (3 GPa). Nearly all Tok xenoliths yield petrographic and chemical evidence for metasomatism: accessory phlogopite, amphibole, phosphates, feldspar and Ti-rich oxides, very high Na2O (2–3.1%) in clinopyroxene, LREE enrichments in whole-rocks.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
Data on the petro- and geochemical characteristics of mantle xenoliths in kimberlites, which sampled the mantle beneath Early Precambrian tectonic structures (Archean cratons: the basement of the Eastern Siberian Platform, Karelian, Kaapvaal, Wyoming, Western Dharvar; Early and Middle Proterozoic foldbelts: Western Olenek, Natal, and Halls Creek), and xenoliths in alkaline basalts, which sampled the mantle benath Late Proterozoic-Phanerozoic structures (foldbelts: Central Asian, Mozambique, southern tip of South America, and Central German) indicate the following: (1) The major and trace element and REE composition of the mantle is different beneath Early Precambrian structures and Late Proterozoic-Phanerozoic foldbelts and reflects the degree of partial melting of the primitive mantle and its depletion in magmaphile components beneath ancient structures compared to young ones. (2) The original composition of the mantle was different beneath the Early Precambrian and Late Proterozoic structures in terms of both major oxides and incompatible trace elements and REE and their ratios; the composition of the mantle beneath the Eastern Siberian Platform, Wyoming, and Karelian cratons is different in terms of Zr/Y, La/Sm, Ce/Sm, Gd/Yb, and Lu/Hf. (3) The degree of melting of the primitive mantle decreases with depth, as follows from the negative correlation between the MgO/SiO2 ratio and pressure (i.e., depth) and the positive correlation between the Al2O3/MgO ratio and pressure in the xenoliths. (4) The Y, Zr, Ti, Sm, Gd, and Yb conncentrations and the sum of HREE in the mantle decrease with increasing degree of melting; correspondingly, the material most strongly depleted in these incompatible trace elements and REE composes the upper levels of the lithospheric continental mantle.  相似文献   

18.
We report 3He/4He ratios from 10 peridotite xenoliths considered to represent samples of the uppermost mantle wedge above the downgoing Juan de Fuca Plate. Helium isotopic ratios in all but two of the xenoliths are similar to many arc magmas, roughly 7 Ra (1 Ra=atmospheric value). Based on decoupling of He from Sr, Nd and Os in these samples, similar He ratios in olivines from rims of larger xenoliths, and modeling of helium exchange between xenoliths and magmas, we interpret this ratio as that of helium in the host basalt. 3He/4He ratios as low as 4.2 Ra are found in olivines from the cores of the two largest xenoliths. These results cannot be reasonably explained by interaction with crustal material or post-eruptive ingrowth of 4He, but have been produced by interaction between mantle peridotite and a 4He-rich melt or fluid. Either 4He already present in the subducting oceanic crust has been retained to significant depths below Simcoe and then directly released behind the arc to interact with the mantle wedge, or, more likely, 4He has been produced by decay of U and Th in metasomatized mantle directly above the slab; a He-rich fluid or melt from this source has then ascended and modified the region of mantle represented by the xenoliths. This latter model is supported by estimates of residence time for the Simcoe metasomatic agent from U–Th–Pb isotopic systematics of pyroxenes from the Simcoe peridotites, estimated U and Th concentrations in the source of the fluid or melt, and commonly assumed patterns of helium behavior. This model is also consistent with higher 3He/4He ratios typically measured in arc samples; the portion of sub-arc mantle with such low He isotope ratios may be quite small, but the Simcoe xenoliths record a much larger volumetric contribution of the He-rich metasomatic agent than do arc lavas.  相似文献   

19.
The Cenozoic Haoti kamafugite field (23 Ma) is situated at the western Qinling Orogen, Gansu Province in China, which is a conjunction region of the North China Craton, the Yangtze Craton and the Tibetan Plateau. Fresh peridotitic xenoliths entrained in these volcanic rocks provide an opportunity to study the nature and processes of the lithospheric mantle beneath the western Qinling. These xenoliths can be divided into two groups based on the petrological features and mineral compositions, type 1 and type 2. Type 1 xenoliths with strongly deformed texture have higher Fo (90–92.5) contents in olivines, Mg# (91–94) and Cr# (15–35) of clinopyroxenes, and Cr# (36–67) of spinels than the weakly deformed type 2 xenoliths, which have the corresponding values of 89–90, 89–91.5, 10–15 and 5–15 in minerals, respectively. CaO contents in fine-grained olivines are slightly higher than 0.10 wt% compared with coarse-grained ones (less than 0.10 wt%). Fine-grained clinopyroxenes have low Al2O3 + CaO contents (generally <23 wt%) relative to coarse-grained ones (>23 wt%). Fo contents in fine-grained olivines mainly in the melt pocket of the type 1 xenoliths are higher than those in coarse-grained ones, which is somewhat contrary to the type 2 xenoliths without melt pocket. Clinopyroxenes of the type 2 display higher Na2O contents (1.7–1.9 wt%) than those of the type 1 (<1.4 wt%). P–T estimations reveal that the type 1 xenoliths give temperature in range of 1106–1187 °C and pressure of 21–26 kbar and that relatively low temperature (907 and 1022 °C) and pressure (19.0 and 18.5 kbar) for the type 2 xenoliths. The type 1 xenoliths are characterized by depletion due to high degree of partial melting (>10%), modal metasomatic and deformed characteristics, and may represent the old refractory lithospheric mantle. In contrast, the type 2 peridotites show fertile features with low degree of partial melting (<5%) and may represent the newly-accreted lithospheric mantle. The lithospheric mantle beneath the western Qinling underwent partial melting, recrystallization, deformation and metasomatism due to asthenospheric upwelling and the latest decompression responding to the Cenozoic extensive tectonic environment. These processes perhaps are closely related to the evolution of Tibetan Plateau caused by the India-Asian collision.  相似文献   

20.
The petrology and geochemistry of peridotite xenoliths in the Cenozoic basalts from Fanshi, the central North China Craton (NCC), provide constraints on the evolution of sub-continental lithospheric mantle. These peridotite xenoliths are mainly spinel-facies lherzolites with minor harzburgites. The lherzolites are characterized by low forsterite contents in olivines (Fo < 91) and light rare earth element (LREE) enrichments in clinopyroxenes. In contrast, the harzburgites are typified by high-Fo olivines (> 91), high-Cr# spinels and clinopyroxenes with low abundances of heavy REE (HREE). These features are similar to those from old refractory lithospheric mantle around the world, and thus interpreted to be relics of old lithospheric mantle. The old lithospheric mantle has been chemically modified by the influx of melts, as evidenced by the Sr–Nd isotopic compositions of clinopyroxenes and relatively lower Fo contents than typical Archean lithospheric mantle (Fo > 92.5). The Sr–Nd isotopic compositions of harzburgites are close to EM1-type mantle, and of the lherzolites are similar to bulk silicate earth. The latter could be the result of recent modification of old harzburgites by asthenospheric melt, which is strengthened by fertile compositions of minerals in the lherzolites. Therefore, the isotopic and chemical heterogeneities of the Fanshi peridotite xenoliths reflect the refertilization of ancient refractory lithospheric mantle by massive addition of asthenospheric melts. This may be an important mechanism for the lithospheric evolution beneath the Central NCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号