首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two coronal mass ejections have been well observed by the LASCO coronagraphs to move out into the interplanetary medium as disconnected plasmoids. The first, on July 28, 1996, left the Sun above the west limb around 18:00 UT. As it moved out, a bright V-shaped structure was visible in the C2 coronagraph which moved into the field-of-view of C3 and could be observed out to beyond 28 solar radii. The derived average velocity in the plane of the sky was 110 ± 5 km s-1 out to 5 solar radii, and above 15 solar radii the velocity was 269 ± 10 km s-1. Thus there is evidence of some acceleration around 6 solar radii. The second event occurred on November 5, 1996 and left the west limb around 04:00 UT. The event had an average velocity in the plane of the sky of ∼54 km s-1 below 4 R⊙, and it accelerated rapidly around 5 R⊙ up to 310 ± 10 km s-1. In both events the rising plasmoid is connected back to the Sun by a straight, bright ray, which is probably a signature of a neutral sheet. In the November event there is evidence for multiple plasmoid ejections. The acceleration of the plasmoids around a projected altitude of 5 solar radii is probably a manifestation of the source surface of the solar wind. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004994214697  相似文献   

2.
Chalov  S.V.  Fahr  H.J. 《Solar physics》1999,187(1):123-144
As known for a long time, interstellar wind neutral helium atoms deeply penetrate into the inner heliosphere and, when passing through the solar gravity field, form a strongly pronounced helium density cone in the downwind direction. Helium atoms are photoionized and picked-up by the solar wind magnetic field, but as pick-up ions they are not simply convected outwards with the solar wind in radial directions as assumed in earlier publications. Rather they undergo a complicated diffusion-convection process described here by an appropriate kinetic transport equation taking into account adiabatic cooling and focusing, pitch angle scattering and energy diffusion. In this paper, we solve this equation for He+pick-up ions which are injected into the solar wind mainly in the region of the helium cone. We show the resulting He+pick-up ion density profile along the orbit of the Earth in many respects differs from the density profile of the neutral helium cone: depending on solar-wind-entrained Alfvénic turbulence levels, the density maximum when looking from the Earth to the Sun is shifted towards the right side of the cone, the ratio of peak-densities to wing-densities varies and a left-to-right asymmetry of the He+-density profile is pronounced. Derivation of interstellar helium parameters from these He+-structures, such as the local interstellar medium (LISM) wind direction, LISM velocity and LISM temperature, are very much impeded. In addition, the pitch-angle spectrum of He+pick-up ions systematically becomes more anisotropic when passing from the left to the right wing of the cone structure. All effects mentioned are more strongly pronounced in high velocity solar wind compared to the low velocity solar wind.  相似文献   

3.
The solution of the classical problem of two-dimensional magnetohydrodynamic (MHD) interaction between two shocks (the angle between the interacting shocks and the slope of the magnetic field are arbitrary) obtained by Pushkar' (1995) is applied to the problem of interaction between interplanetary shocks and the solar wind termination shock (TS). The self-consistent kinetic-gasdynamic model of solar wind interaction with the supersonic flow of a three-component (electrons, protons, and hydrogen atoms) interstellar medium developed for the axisymmetric, steady-state case by Baranov and Malama (1993) is used as the stationary background against which the physical phenomenon under consideration takes place. The main physical process in this model is the resonant charge exchange between protons and hydrogen atoms. This paper is a natural continuation of our previous papers (Baranov et al. 1996a, 1996b). However, whereas attention in these papers was focused on the TS interaction with an interplanetary forward shock moving away from the Sun, here we consider the TS interaction with an interplanetary reverse shock (RS) moving toward the Sun with a velocity lower than the solar-wind velocity. We show that the TS-RS interaction can give rise to a new TS' that moves toward the Sun, i.e., toward Voyager 1 and Voyager 2. This phenomenon may be responsible for the unexpected suggestion made by some of the scientists that Voyager 1 already crossed TS in the past year. This conclusion was drawn from the interpretation of the intensity, energy spectra, and angular distributions of ions in the energy range from 10 keV to 40 MeV measured from this spacecraft. Our results show that Voyager 1 could cross TS' rather than TS.  相似文献   

4.
We explore the conditions for resonance between cometary pick-up ions and parallel propagating electromagnetic waves. A model ring—beam distribution for the pick-up H2O+ ions is adopted which allows a direct comparison of the source of free energy for growth from either the beam or the gyrating ring in the limit near marginal stability. Under average solar wind conditions in the inner solar system, the gyrating ring provides the dominant contribution to wave growth. The presence of a field-aligned beam is only important to allow resonance with R-mode waves which occur in two distinct frequency bands either well above or below the pick-up ion gyrofrequency. The most unstable mode is the low frequency R-mode or fast MHD wave, though higher frequency whistlers or low frequency L-mode waves may also be excited by the same source of free energy. The nature of the unstable waves is strongly influenced by the inclination of the interplanetary field. For 3° the rate of the low frequency R-mode growth is dramatically reduced and resonant L-mode waves should experience net ion beam damping. Conversely for 75°, the ion beam velocity will be insufficient to allow resonant R-mode instability; L-mode waves should therefore predominate. The low frequency fast MHD mode should experience the most rapid amplification for intermediate inclination; 30° 75°. In the frame of the solar wind such waves must propagate along the field in the direction upstream towards the Sun with a phase speed lower than the beaming velocity of the pick-up ions. The waves are consequently blown back away from the Sun and would thus be detected with a left-hand polarization by an observer in the cometary frame. We consider this the most likely mechanism to account for the interior MHD waves observed by satellites over an extended spatial region surrounding comets Giacobini-Zinner and Halley.  相似文献   

5.
We present a model of solar flares triggered by collisions between current loops and plasmoids. We investigate a collision process between a force-free current loop and a plasmoid, by using 3-D resistive MHD code. It is shown that a current system can be induced in the front of a plasmoid, when it approaches a force-free current loop. This secondary current produced in the front of the plasmoid separates from the plasmoid and coalesces to the force-free current loop associated with the magnetic reconnection. The core of the plasmoid stays outside the reconnection region, maintaining high density. The core can be confined by the current system produced around the plasmoid. This collison process between a current loop and a plasmoid may explain the triggering of solar flares observed byYohkoh.  相似文献   

6.
The interaction of interstellar pick-up ions with the solar wind is studied by comparing a model for the velocity distribution function of pick-up ions with actual measurements of He+ ions in the solar wind. The model includes the effects of pitch-ang'e diffusion due to interplanetary Alfvén waves, adiabatic deceleration in the expanding solar wind and the radial variation of the source function. It is demonstrated that the scattering mean free path is in the range 0.1 AU and that energy diffusion can be neglected as compared with adiabatic deceleration. The effects of adiabatic focusing, of the radial variation of the neutral density and of a variation of the solar wind velocity with distance from the Sun are investigated. With the correct choice of these parameters we can model the measured energy spectra of the pick-up ions reasonably well. It is shown that the measured differential energy density of the pick-up ions does not vary with the solar wind velocity and the direction of the interplanetary magnetic field for a given local neutral gas density and ionization rate. Therefore, the comparison of the model distributions with the measurements leads to a quantitative determination of the local interstellar gas density.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

7.
We search for persistent and quasi-periodic release events of streamer blobs during 2007 with the Large Angle Spectrometric Coronagraph on the Solar and Heliospheric Observatory and assess the velocity of the slow solar wind along the plasma sheet above the corresponding streamer by measuring the dynamic parameters of blobs. We find ten quasi-periodic release events of streamer blobs lasting for three to four days. In each day of these events, we observe three – five blobs. The results are in line with previous studies using data observed near the last solar minimum. Using the measured blob velocity as a proxy for that of the mean flow, we suggest that the velocity of the background slow solar wind near the Sun can vary significantly within a few hours. This provides an observational manifestation of the large velocity variability of the slow solar wind near the Sun.  相似文献   

8.
The initially supersonic flow of the solar wind passes through a magnetic shock front where its velocity is supposed to be reduced to subsonic values. The location of this shock front is primarily determined by the energy density of the external interstellar magnetic field and the momentum density of the solar wind plasma. Interstellar hydrogen penetrating into the heliosphere undergoes charge exchange processes with the solar wind protons and ionization processes by the solar EUV radiation. This results in an extraction of momentum from the solar wind plasma. Changes of the geometry and the location of the shock front due to this interaction are studied in detail and it is shown that the distance of the magnetic shock front from the Sun decreases from 200 to 80 AU for an increase of the interstellar hydrogen density from 0.1 to 1.0 cm−3. The geometry of the shock front is essentially spherical with a pronounced embayment in the direction opposite to the approach of interstellar matter which depends very much on the temperature of the interstellar gas. Due to the energy loss by the interaction with neutral matter the solar wind plasma reduces its velocity with increasing distance from the Sun. This modifies Parker's solution of a constant solar wind velocity.  相似文献   

9.
The solar wind ions flowing outward through the solar corona generally have their ionic fractions freeze-in within 5 solar radii. The altitude where the freeze-in occurs depends on the competition between two time scales: the time over which the wind flows through a density scale height, and the time over which the ions achieve ionization equilibrium. Therefore, electron temperature, electron density, and the velocity of the ions are the three main physical quantities which determine the freeze-in process, and thus the solar wind ionic charge states. These physical quantities are determined by the heating and acceleration of the solar wind, as well as the geometry of the expansion. In this work, we present a parametric study of the electron temperature profile and velocities of the heavy ions in the inner solar corona. We use the ionic charge composition data observed by the SWICS experiment on Ulysses during the south polar pass to derive empirically the electron temperature profile in the south polar coronal hole. We find that the electron temperature profile in the solar inner corona is well constrained by the solar wind charge composition data. The data also indicate that the electron temperature profile must have a maximum within 2 solar radii. We also find that the velocities of heavy ions in their freeze-in regions are small (<100 km s-1) and different elements must flow at different velocities in the inner corona.  相似文献   

10.
The Sun is enveloped by a hot, tenuous million-degree corona that expands to create a continuous solar wind that sweeps past all the planets and fills the heliosphere. The solar wind is modulated by strong gusts that are initiated by powerful explosions on the Sun, including solar flares and coronal mass ejections. This dynamic, invisible outer atmosphere of the Sun is currently under observation with the soft X-ray telescope aboard the Yohkoh spacecraft, whose results are presented. We also show observations from the Ulysses spacecraft that is now passing over the solar pole, sampling the solar wind in this region for the first time. Two other spacecraft, Voyager 1 and 2, have recently detected the outer edge of the invisible heliosphere, roughly halfway to the nearest star. Magnetic solar activity, the total radiative output from the Sun, and the Earth's mean global surface temperature all vary with the 11-year sunspot cycle in which the total number of sunspots varies from a maximum to a minimum and back to a maximum again in about 11 years. The terrestrial magnetic field hollows out a protective magnetic cavity, called the magnetosphere, within the solar wind. This protection is incomplete, however, so the Sun feeds an unseen world of high-speed particles and magnetic fields that encircle the Earth in space. These particles endanger spacecraft and astronauts, and also produce terrestrial aurorae. An international flotilla of spacecraft is now sampling the weak points in this magnetic defense. Similar spacecraft have also discovered a new radiation belt, in addition to the familiar Van Allen belts, except fed by interstellar ions instead of electrons and protons from the Sun.  相似文献   

11.
Magnetic reconnection is thought to be a key process in most solar eruptions. Thanks to highresolution observations and simulations, the studied scale of the reconnection process has become smaller and smaller. Spectroscopic observations show that the reconnection site can be very small, which always exhibits a bright core and two extended wings with fast speeds, i.e., transition-region explosive events.In this paper, using the PLUTO code, we perform a 2-D magnetohydrodynamic simulation to investigate small-scale reconnection in double current sheets. Based on our simulation results, such as the line-of-sight velocity, number density and plasma temperature, we can synthesize the line profile of SiIV 1402.77? which is a well known emission line used to study transition-region explosive events on the Sun. The synthetic line profile of Si IV 1402.77? is complex with a bright core and two broad wings which can extend to nearly 200 km s-1. Our simulation results suggest that the transition-region explosive events on the Sun are produced by plasmoid instability during small-scale magnetic reconnection.  相似文献   

12.
The spacecraft P1 of the new ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) mission passed the lunar wake for the first time on February 13, 2010. We present magnetic field and plasma data of this event and results of 3D hybrid simulations. As the solar wind magnetic field was highly dynamic during the passage, a simulation with stationary solar wind input cannot distinguish whether distortions were caused by these solar wind variations or by the lunar wake; therefore, a dynamic real-time simulation of the flyby has been performed. The input values of this simulation are taken from NASA OMNI data and adapted to the P1 data, resulting in a good agreement between simulation and measurements. Combined with the stationary simulation showing non-transient lunar wake structures, a separation of solar wind and wake effects is achieved. An anisotropy in the magnitude of the plasma bulk flow velocity caused by a non-vanishing magnetic field component parallel to the solar wind flow and perturbations created by counterstreaming ions in the lunar wake are observed in data and simulations. The simulations help to interpret the data granting us the opportunity to examine the entire lunar plasma environment and, thus, extending the possibilities of measurements alone: A comparison of a simulation cross section to theoretical predictions of MHD wave propagation shows that all three basic MHD modes are present in the lunar wake and that their expansion governs the lunar wake refilling process.  相似文献   

13.
We have studied the H+ velocity distribution function at Mars and Venus near the bow shock both in the solar wind and in the magnetosheath by a simple analytical one-dimensional model. We found that over half of the ions in the ring velocity distribution which moved towards the magnetosheath were scattered back into the bow shock. The original ring distribution is destroyed in less than an ion gyro period. Ions contained in the magnetosphere which hit the bow shock bounce back into the solar wind with a maximum energy exceeding twice the energy of solar wind protons. The ions finite gyroradius causes an asymmetric flow in the magnetosheath with respect to the direction of the convective electric field, which can be observed already a few ion gyroradius downstream of the bow shock.  相似文献   

14.
X-ray images of the solar corona, taken on November 24, 1970, showed a magnetically open structure in the low corona which extended from N20W20 to the south pole. Analysis of the measured X-ray intensities shows the density scale height within the structure to be typically a factor of two less than that in the surrounding large scale magnetically closed regions. The structure is identified as a coronal hole.Since there have been several predictions that such a region should be the source of a high velocity stream in the solar wind, wind measurements for the appropriate period were traced back to the Sun by the method of instantaneous ideal spirals. A striking agreement was found between the Carrington longitude of the solar source of a recurrent high velocity solar wind stream and the position of the hole.Solar wind bulk velocity and photospheric magnetic field data from the period 1962–1970 indicate the possible extension of the result to the interpretation of long term variations in the wind pattern.  相似文献   

15.
The problem of the action of the solar radiation on the motion of interplanetary dust particle is discussed. Differences between the action of electromagnetic solar radiation and that of the solar wind are explained not only from the point of view of the physical nature of these phenomena but also from the point of view of dust particle's orbital evolution. As for the electromagnetic solar radiation, general equation of motion for the particle is written and the most important consequences are: (i) the process of inspiralling toward the Sun is not the only possible motion - even spiralling from the Sun is also possible, and, (ii) the orbital plane of the particle (its inclination) may change in time. As for the solar wind, the effect corresponding to the fact that solar wind particles spread out from the Sun in nonradial direction causes that the process of inspiralling toward the Sun is in more than 50% less effective than for radial spread out; in the region of the asteroid belt (long period orbits) the process of inspiralling is changed into offspiralling. Also shift in the perihelion of dust particle's orbit exists.  相似文献   

16.
We have studied the 27-day variations and their harmonics in Galactic cosmic ray (GCR) intensity, solar wind velocity, and interplanetary magnetic field (IMF) components during the recent prolonged solar minimum 23/24. The time evolution of the quasi-periodicity in these parameters connected with the Sun’s rotation reveals that the synodic period of these variations is ≈?26?–?27 days and is stable. This means that the changes in the solar wind speed and the IMF are related to the Sun’s near-equatorial regions in considering the differential rotation of the Sun. However, the solar wind parameters observed near the Earth’s orbit provide only the conditions in the limited local vicinity of the equatorial region in the heliosphere (within ±?7° in latitude). We also demonstrate that the observed period of the GCR intensity connected with the Sun’s rotation increased up to ≈?33?–?36 days in 2009. This means that the process that drives the 27-day GCR intensity variations takes place not only in the limited local surroundings of the equatorial region but in the global 3-D space of the heliosphere, covering also higher latitude regions. A relatively long period (≈?34 days) found for 2009 in the GCR intensity gives possible evidence of the onset of cycle 24 due to active regions at higher latitudes and rotating slowly because of the Sun’s differential rotation. We also discuss the effect of differential rotation on the theoretical model of the 27-day GCR intensity variations.  相似文献   

17.
《Icarus》1986,66(1):165-180
We investigate the interaction of heavy cometary ions with the solar wind and the formation of a bow shock in front of a comet by means of a hybrid (particle ion, fluid electron) simulation code that solves self-consistently for the electromagnetic fields and the motion of the charged particles. This kinetic treatment of the solar wind protons and the heavy cometary ions allows us to examine two important issues. One is the effect of the velocity distribution function of the heavy ions on the shock formation and structure, and the other is the degree of coupling between the two ion species. The result of this study indicate that at high Mach numbers the shock structure is highly dependent upon the velocity distribution of the heavy ions. For example, when the newly created ions comprise a ring distribution in the solar wind frame, most of them turn around downstream of the shock surface and reenter the upstream region to form a large foot that extends about a heavy ions gyroradius upstream of the shock. On the other hand, heavy ions which have been picked up by the solar wind and possesses a Maxwellian distribution can mostly penetrate the shock without returning upstream and affecting the shock structure as much. In either case, however, at high Mach numbers the shock strength is the same. At low Mach numbers, where the shock is weak, the velocity distribution of heavy ions has a smaller effect on the formation of shock and its structure. In this regime, the degree of coupling between the cometary ions and the solar wind protons and the corresponding critical Mach number (at which a shock should begin to form) are determined from a set of Rankine-Hugoniot relations. The results of the simulations suggest that some coupling does occur (evidently, through the electromagnetic fields, since there are no particle collisions in the calculations), but less than that expected from magnetohydrodynamics. For low Mach numbers, it is also shown that shocks have a transitory nature, where they are continuously formed by the protons and subsequently destroyed by the heavy ions.  相似文献   

18.
The technique of interplanetary scintillation (IPS) is the observation of rapid fluctuations of the radio signal from an astronomical compact source as the signal passes through the ever-changing density of the solar wind. Cross-correlation of simultaneous observations of IPS from a single radio source, received at multiple sites of the European Incoherent SCATter (EISCAT) radio antenna network, is used to determine the velocity of the solar wind material passing over the lines of sight of the antennas. Calculated velocities reveal the slow solar wind to contain rapid velocity variations when viewed on a time-scale of several minutes. Solar TErrestrial RElations Observatory (STEREO) Heliospheric Imager (HI) observations of white-light intensity have been compared with EISCAT observations of IPS to identify common density structures that may relate to the rapid velocity variations in the slow solar wind. We have surveyed a one-year period, starting in April 2007, of the EISCAT IPS observing campaigns beginning shortly after the commencement of full science operations of the STEREO mission in a bid to identify common density structures in both EISCAT and STEREO HI datasets. We provide a detailed investigation and presentation of joint IPS/HI observations from two specific intervals on 23 April 2007 and 19 May 2007 for which the IPS P-Point (point of closest approach of the line of sight to the Sun) was between 72 and 87 solar radii out from the Sun’s centre. During the 23 April interval, a meso-scale (of the order of 105 km or larger) transient structure was observed by HI-1A to pass over the IPS ray path near the P-Point; the observations of IPS showed a micro-scale structure (of the order of 102 km) within the meso-scale transient. Observations of IPS from the second interval, on 19 May, revealed similar micro-scale velocity changes, however, no transient structures were detected by the HIs during that period. We also pose some fundamental thoughts on the slow solar wind structure itself.  相似文献   

19.
20.
C. B. Wang  Bin Wang  L. C. Lee 《Solar physics》2014,289(10):3895-3916
A scenario is proposed to explain the preferential heating of minor ions and differential-streaming velocity between minor ions and protons observed in the solar corona and in the solar wind. It is demonstrated by test-particle simulations that minor ions can be nearly fully picked up by intrinsic Alfvén-cyclotron waves observed in the solar wind based on the observed wave energy density. Both high-frequency ion-cyclotron waves and low-frequency Alfvén waves play crucial roles in the pickup process. A minor ion can first gain a high magnetic moment through the resonant wave–particle interaction with ion-cyclotron waves, and then this ion with a large magnetic moment can be trapped by magnetic mirror-like field structures in the presence of the low-frequency Alfvén waves. As a result, the ion is picked up by these Alfvén-cyclotron waves. However, minor ions can only be partially picked up in the corona because of the low wave energy density and low plasma β. During the pickup process, minor ions are stochastically heated and accelerated by Alfvén-cyclotron waves so that they are hotter and flow faster than protons. The compound effect of Alfvén waves and ion-cyclotron waves is important in the heating and acceleration of minor ions. The kinetic properties of minor ions from simulation results are generally consistent with in-situ and remote features observed in the solar wind and solar corona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号