首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
为查明海岸带弱透水层孔隙水的盐分来源与演变机制,在连云港海州湾钻探采集了4个钻孔的粘性土柱,采用压榨法采集孔隙水,测定了孔隙水化学-同位素组分,建立了二维剖面孔隙水全新世以来的溶质运移数值模型.由陆向海孔隙水的总溶解固体由0.9增加到41.4 g/L,垂向上浅层高、深层低.孔隙水Cl/Br比为170~533(均值267),87Sr/86Sr比值为0.709 3~0.711 6,Cl-与δ18O呈正相关关系,表明孔隙咸水为海相成因,同时还受到硅酸盐矿物风化和阳离子交换作用影响.全新世弱透水层孔隙水为10~5 ka BP海侵时期的古海水,向下入渗造成更新世孔隙水咸化.4 ka BP海退后,孔隙水接受淡水补给,但古海水并未被完全驱替.近海岸处孔隙水受持续蒸发影响而形成盐水.数值模拟表明海侵-海退事件是控制弱透水层孔隙水盐分演变的主要因素,海侵时海水以“指状”模式向下入侵,造成了咸淡水的不均匀分布.  相似文献   

2.
地面沉降模型是地面沉降研究的重要内容,由于弱透水层的变形量占地层全部变形量的比重较大,因此对弱透水层固结模型的研究是地面沉降模型研究中的重要部分.笔者通过对深部弱透水层中粘性土孔隙水类型进行分析,得出深度弱透水层中孔隙水类型并对该类型孔隙水变形特性进行了研究,总结出深部弱透水层固结机理.在机理分析的基础上,提出采用非达西流计算模式对深部弱透水层计算模型进行了修正,并提出了深部弱透水层固结计算模型建议:孔隙水类型主要为扩散层内结合水时,可以采用利用非达西流修正的太沙基固结方程对深部弱透水层变形进行计算,可以参考给出的采用非达西定律修正过的一维固结方程;孔隙水类型主要为吸附结合水时,可以利用弹性本构关系模型对深部弱透水层进行变形计算.  相似文献   

3.
苟富刚  龚绪龙 《地球学报》2023,44(6):1063-1075
弱透水层孔隙水反映了土体沉积时的原始溶液, 对于古气候重建具有重大作用。为了解析长江河口地区全新世以来弱透水层孔隙水的补给及其盐分来源, 采集易溶盐、土工、潜水、近岸海水等样品。采用易溶盐指标结合土工指标(含水率、湿密度、比重)获取了研究区弱透水层孔隙水的水化学特征。采用二端元法、Piper三线图、Gibbs图、离子比值法等解析了孔隙水的补给及其盐分来源。结果表明: 孔隙水矿化度介于1.16~32.79 g/L, 平均值为10.68 g/L, 盐水占比最高, 其次为咸水和微咸水。孔隙水类型以Cl-Na型(85.6%)为主, 其次从高到低依次为Cl-Ca·Mg、HCO3-Ca·Na、HCO3-Ca、Cl-Ca型。当地潜水类型为HCO3-Ca型, 深层孔隙类型为Cl-Na型, 说明深层孔隙水保留了土体沉积时的环境信息。中层与浅层孔隙水受到了大气降水补给、人类活动、蒸发作用等表层作用影响, 孔隙水水化学数据较为离散。孔隙水的δ18O与δD数据说明孔隙水样点受到了海水混合作用与蒸发作用的叠加影响, 蒸发作用较为强烈。孔隙水海水补给比例介于30.2%~87.0%, 大气降水补给比例介于13.0%~69.8%。土体中的盐分主要来自全新世海侵(海源)与蒸发盐岩溶解、长石风化溶解(地壳源)。海水补给深层孔隙水盐分的比例约为37%, 其余盐分主要来自地壳源。  相似文献   

4.
牛宏  梁杏  李静  马斌  葛勤 《地球科学》2016,41(3):499-507
衡水地区的咸水层特征一直备受关注.为了探讨咸水层分布区的沉积环境与咸水形成期的古气候特征,利用钻孔(深度130 m)采集了衡水地区咸水层沉积物,进行了沉积物粒度和粘性土孔隙水氘氧同位素测试.沉积物粒度标准偏差显示,剖面上由深至浅,沉积时期水动力呈由弱到强再到弱的变化趋势,其中水动力强段为90~65 m,为厚层砂砾层.孔隙水TDS和δ18O特征显示在6 m以上受到大气降水和人类活动的影响,并且主要是以淡水灌溉影响为主.剖面上粘性土孔隙水的δ18O在130~90 m平均值为-11.5‰,65~29 m平均值为-12.1‰,23~0 m为-10.6‰,而下部淡水含水层地下水δ18O为-9.8‰,上部咸水含水层地下水δ18O为-8.2‰,粘性土孔隙水δ18O明显偏负于含水层的地下水,反映保存记录了古气候信息.130~90 m,δ18O先增大后减小反映温度先升高后降低;65~29 m,δ18O反映温度偏低的气候特征;23~0 m,δ18O相对比较稳定,总体偏正,反映了全新世为一个相对较为稳定但较高的温度.   相似文献   

5.
采用高渗透压渗流试验装置,模拟已被污染的浅层地下水越流通过弱透水层污染深层地下水的过程,研究不同矿化度、不同pH条件下有机污染物(菲)通过饱和黏性土弱透水层时的质量浓度变化特征。结果表明:矿化度的增加有利于弱透水层吸附截留渗滤液中的菲;高矿化度水中的Na+交替土层中的Ca2+、Mg2+,使水中的Ca2+、Mg2+质量浓度增加,与HCO-3、菲组合形成络合物;不同pH条件下,Ca2+、Mg2+、HCO-3对菲的迁移有阻滞作用,SO2-4参与还原反应并可与菲形成络合物,对菲迁移有促进作用。菲在弱透水层中的迁移能力很弱,衰减率达82%~96%,高渗透压下菲的污染锋面迁移速度为0.714 m/d,pH=8时菲通过弱透水层的迁移质量浓度最小。控制渗滤液的pH、组分可有效阻止菲在弱透水层中的迁移。  相似文献   

6.
王露霞  梁杏  李静 《地球科学》2020,45(2):701-710
江汉平原地下水需求量日益增加、水质持续恶化,深入探究地下水的成因,对于地下水的合理利用与评价具有重要意义.选取江汉平原腹地YLW01钻孔和汉江附近HJ007钻孔为研究对象,钻探采集原状土柱,提取孔隙水,分析其水化学和氘氧同位素特征.研究表明:YLW01孔中深层砂性土孔隙水为咸水,TDS为1 131~4 013 mg/L,粘性土孔隙水为淡水;HJ007孔孔隙水均为淡水.YLW01孔中深层砂性土孔隙水的高SO42-含量(459~2 124 mg/L),由石膏溶解形成;HJ007孔中深层孔隙水的高NO3-含量(22~315 mg/L),由土壤中硝化作用形成.孔隙水化学成分主要受矿物溶解和阳离子交替吸附作用影响,在长江和汉江带作用程度不同.氘氧同位素特征表明孔隙水来源于大气降水,且汉江带浅层地下水受到明显的地表水混合.江汉平原两个钻孔水化学与同位素的差异受长江和汉江影响带河湖相沉积环境、沉积物粒度及矿物组成所控制.   相似文献   

7.
滨海平原弱透水层广布且多赋存古咸水,其盐度分布及运移过程深刻影响着含水层地下水的演变,却得到甚少关注.采集了江苏滨海区7个浅层钻孔弱透水层原状样品,压榨法收集孔隙水.利用孔隙水天然示踪剂ρ(Cl),ρ(Br)剖面和数值模拟分析了弱透水层孔隙水盐度特征和运移机制.得出浅层孔隙水ρ(Cl)垂向剖面存在2个趋势:①峰值在表层...  相似文献   

8.
地面沉降是目前长江三角洲经济区最主要的一种地质灾害。随着苏锡常地区地下水的全面禁采,目前土体的压缩变形主要来自弱透水层。本文以无锡市锡山区光明村06号钻孔为例,采用压汞试验(MIP)对钻孔土样中的孔隙分布进行了分析,研究了黏性土中的孔隙与地面沉降之间的关系;根据MIP的孔隙分析结果,提出了团粒间孔隙比emip 的概念,并将此作为评价弱透水层压缩潜力的指标;采用这一指标,对该钻孔中的弱透水层的地面沉降潜力进行了评价。地面沉降潜力由大到小依次为:第Ⅰ-1弱透水层、第Ⅱ弱透水层、第Ⅰ-2弱透水层、第Ⅰ-3弱透水层。这一结果与土样压缩参数及扫描电镜(SEM)的微观结构分析结果完全一致,是判定弱透水层地面沉降压缩潜力行之有效的一种方法。  相似文献   

9.
尹建华  顾凯  姜洪涛  卢毅  施斌 《工程地质学报》2016,24(s1):1179-1183
已有监测结果表明,当前无锡地区地面沉降中土体压缩变形主要来自于弱透水层,对弱透水层压缩性评价有助于对该地区地面沉降发展趋势的判断。本文以无锡光明村一钻孔中第四纪土层为研究对象,采用扫描电镜(SEM),从微观尺度对位于不同深度弱透水层中的粉质黏土的孔隙分布特征进行了研究,并与固结试验数据进行了对比。研究发现,弱透水层的SEM微观结构图像定量分析结果,与土层的压缩性有很好的相关性,它可以定量反映土中可压缩孔隙的数量以及孔隙的复杂程度;土的孔隙率与概率分布指数可反映土中可压缩孔隙的密度和土的压缩性。概率分布指数越小,土体中可压缩孔隙的数量越多。研究成果从微观上为苏锡常地区地面沉降预测提供依据。  相似文献   

10.
地球化学模拟方法确定黏性土孔隙水化学组分   总被引:1,自引:1,他引:0       下载免费PDF全文
黏性土孔隙水的地球化学行为对于弱透水层水质水量研究、污染物在黏性土中的迁移、核废物储存场址评价及油气储层的盖层评价等均具有重要作用。受低渗透性限制,传统方法提取黏性土孔隙水非常困难。通过实验测定黏性土的物化特性,利用PHREEQC软件模拟计算了孔隙水组成。通过浸提实验,利用阴离子可通过孔隙度(50%总孔隙度)确定模型中孔隙水的Cl-和SO2-4含量;根据岩土的阳离子交换量及各离子的交换选择系数,矿物沉淀 溶解平衡,确定了孔隙水的主要化学组分。结果显示,模拟的孔隙水化学组分与压榨液(相当于原位孔隙水)相近,不同于浸提液。传统的浸提方法不可直接换算为孔隙水,受矿物可交换点阳离子的释出与矿物溶解影响,各离子含量被明显高估。模拟所得天津滨海区黏性土阳离子交换量为13.4~37.8 meq/100g土,可交换离子以Na、Mg、Ca为主。所得孔隙水为还原环境,且随着深度增加,还原性增强。模型中所选矿物均为平衡状态,溶液中可能存在的矿物大部分为未饱和或平衡状态,仅部分含Fe、Al矿物过饱和。由结果可知Fe含量偏高,对控制Fe元素的矿物需进一步精确测定。本方法在低渗透,超固结,低含水量介质的孔隙水相关研究中将发挥重要作用。  相似文献   

11.
Numerous studies of marine environments show that dissolved organic carbon (DOC) concentrations in sediments are typically tenfold higher than in the overlying water. Large concentration gradients near the sediment–water interface suggest that there may be a significant flux of organic carbon from sediments to the water column. Furthermore, accumulation of DOC in the porewater may influence the burial and preservation of organic matter by promoting geopolymerization and/or adsorption reactions. We measured DOC concentration profiles (for porewater collected by centrifugation and “sipping”) and benthic fluxes (with in situ and shipboard chambers) at two sites on the North Carolina continental slope to better understand the controls on porewater DOC concentrations and quantify sediment–water exchange rates. We also measured a suite of sediment properties (e.g., sediment accumulation and bioturbation rates, organic carbon content, and mineral surface area) that allow us to examine the relationship between porewater DOC concentrations and organic carbon preservation. Sediment depth-distributions of DOC from a downslope transect (300–1000 m water depth) follow a trend consistent with other porewater constituents (ΣCO2 and SO42−) and a tracer of modern, fine-grained sediment (fallout Pu), suggesting that DOC levels are regulated by organic matter remineralization. However, remineralization rates appear to be relatively uniform across the sediment transect. A simple diagenetic model illustrates that variations in DOC profiles at this site may be due to differences in the depth of the active remineralization zone, which in turn is largely controlled by the intensity of bioturbation. Comparison of porewater DOC concentrations, organic carbon burial efficiency, and organic matter sorption suggest that DOC levels are not a major factor in promoting organic matter preservation or loading on grain surfaces. The DOC benthic fluxes are difficult to detect, but suggest that only 2% of the dissolved organic carbon escapes remineralization in the sediments by transport across the sediment-water interface.  相似文献   

12.
中新天津生态城是典型的海岸带建设城市,其复杂的水文地质条件制约着地下空间建设。为查清地下空间水质的垂向分布情况,利用中新天津生态城11个深度为40.0 m的钻孔采取不同深度的原状土样,并采用气体压榨法得到土样中的孔隙水样品,对孔隙水的pH值,总硬度,TDS、K+、Na+、Ca2+、Mg2+、CO32-、HCO3-、SO42-、Cl-、Sr、Br质量浓度,Cl/Br,γNa/γCl及87Sr/86Sr等水化学和同位素参数进行了测试分析。结果显示,孔隙水中水化学成分的质量浓度存在显著的垂向差异(最大相差4倍):受潮滩生卤影响,北部除HCO3-外,其他所有离子最大质量浓度出现在地下5.0 m左右;受地表水影响,中部与南部Cl-最大质量浓度出现在埋深15.0 m左右,其余离子分布规律与Cl-基本一致。水化学和同位素特征联合表明,埋深小于20.0 m的孔隙水表现出明显的现代海水特征,说明其主要受现代海水影响;埋深大于20.0 m的孔隙水化学特征受现代海水和水岩相互作用综合影响,且受古沉积水影响明显。  相似文献   

13.
Results of pore water and sediment analyses from the western Mexican continental margin strongly suggest the present day formation of apatite. The interstitial water phosphate and fluoride profiles indicate chemical removal at a depth which corresponds to a large maximum in the phosphorus content of the sediments. Apatite is identified within this maximum via X-ray diffraction but is elsewhere undetectable in the core. Radioisotopic thorium, uranium, and radium data support the conclusion that this deposit is modern. The present day depositional environment is consistent with those reported by other workers for phosphorite formation with the exception that pore water magnesium is not depleted below its seawater value.  相似文献   

14.
Chemical and isotopic compositions were analyzed in porewater squeezed from a clayey aquitard in Jiangsu coastal plain, eastern China, to interpret the salinity origin, chemical evolution and water-mass mixing process. A strong geochemical fingerprint was obtained with an aligned Cl/Br ratio of 154 in the salinized aquitard porewater over a wide Cl? concentration range (396–9,720 mg/L), indicating that porewater salinity is likely derived from a mixing with old brine with a proportion of less than 20%. Very small contributions of brine exerted limited effects on water stable isotopes. The relationships between porewater δ18O and δD indicate that shallow and intermediate porewaters could be original seawater and were subsequently diluted with modern meteoric water, whereas deep porewaters with depleted stable isotopic values were probably recharged during a cooler period and modified by evaporation and seawater infiltration. The cation–Cl relationship and mineralogy of associated strata indicate that porewater has been chemically modified by silicate weathering and ion-exchange reactions. 87Sr/86Sr ratios of 0.7094–0.7112 further confirm the input source of silicate minerals. Numerical simulations were used to evaluate the long-term salinity evolution of the deep porewater. The alternations of boundary conditions (i.e., the third aquifer mixed with brine at approximately 70 ka BP, followed by recharge of glacial meltwater at 20–25 ka BP, and then mixing with Holocene seawater at 7–10 ka BP) are responsible for the shift in porewater salinity. These timeframes correspond with the results of previous studies on ancient marine transgression-regression in Jiangsu coastal plain.  相似文献   

15.
关于西太平洋海山区深水盆地海水和孔隙水的地球化学特征,及其对该海域多金属结核生成的影响的研究至今仍比较缺乏.对西太平洋海山区的深海盆地进行海水和孔隙水的系统采样,分析了海水的化学特征以及海水和孔隙水的微量元素特征.结果显示:海水的DO和pH随水深增加呈逐渐下降再上升的趋势,而SiO32-、NO3-和PO43-的变化特征与其相反;微量元素在海水中的变化特征与上述营养盐相似,海水-沉积物界面表现出溶解态微量元素含量的极大富集,而在3~5 cm处的微弱上升可能与自生物质分解有关.以上表明大洋底层海水金属元素的富集与生物作用相关,是导致普遍氧化的表层沉积物之上多金属结核富集的主控因素;相对于其他海域,研究区域碎屑物质溶解产生的Sc、Cr、Ni、Pb以及大量的Cu、Co等金属元素可能对结核的生长起到重要的促进作用.   相似文献   

16.
Geochemical processes occurring at a seawater/freshwater interface were studied in a shallow coastal siliclastic aquifer containing minor amounts of calcite. Data were collected from 106 piezometers in a 120-m transect from the coastline and landward. In the first 40 m from the coastline, a wedge of saltwater is intruding below the freshwater aquifer. The aquifer is strongly reduced with mineralization of organic matter by methanogenesis in the freshwater aquifer, and sulfate reduction dominating in the most seaward part of the saline aquifer. The spatial separation of cations in the aquifer indicated a slow freshening process where Ca2+ from freshwater displaced the marine cations Na+ and Mg2+ from the exchanger complex. The resulting loss of Ca2+ from solution decreases the saturation state for calcite and possibly causes calcite dissolution. A storm-flooding event was recorded where pulses of dense seawater sank through the fresh aquifer. As a result, the terminal electron accepting process switched from methanogenesis to sulfate reduction. The pulses of sinking seawater also triggered cation exchange reactions where Ca2+ was expelled from the exchanger by seawater Na+ and Mg2+. The released Ca2+ is being flushed from the aquifer by groundwater flow, and this export of Ca2+ will, in the long term, cause decalcification of the sediment. The water composition in the aquifer is in a transient state as the result of various processes that operate on different timescales. Oxidation of organic matter occurs continuously but at a rate decreasing on a geological time scale. The freshening of the aquifer operates on the timescale of a few years. The episodic flooding and sinking of seawater through the aquifer proceeds in the course of days to weeks, but occurs irregularly with years in between.  相似文献   

17.
We present data for dissolved germanic and silicic acids from several settings: sediment pore water profiles collected from the Peru-Chile continental margin, fluxes measured with in situ benthic flux chambers and shipboard whole-core incubations, and water column profiles from the California continental margin. Collectively, these data show that Ge and Si are fractionated in these continental margin sedimentary environments during diagenesis with ∼50% of the Ge released by opal dissolution being sequestered within the sediments. The areal extent of this diagenetic fractionation covers station depths from ∼100 m to >1000 m. Sediments from these sites typically have high pore water Fe2+ present in the upper ∼2 cm. At sites with low Fe2+ concentrations in the upper pore waters, the Ge:Si benthic regeneration ratio indicates little or no fractionation during diatom dissolution. Consistent with the sedimentary fractionation, water column dissolved Ge:Si ratios along the continental margin are on average lower (0.66 μmol/mol) than the global average ratio (0.72 μmol/mol, Mortlock and Froelich, 1996). This lower “average” ratio is driven by two distinct ΔGe:ΔSi data trends having similar slopes but different intercepts. Data from the upper ∼150 m has a Ge:Si slope of 0.74 ± 0.04 μmol/mol (2σ) and an intercept of 0.5 ± 0.4; whereas below ∼550 m the slope is 0.70 ± 0.06 μmol/mol, but the intercept is −5.0 ± 8.0. Assuming that the sediments sampled here are representative of all reducing marine environments, an assumption requiring further testing, our calculations indicate that sequestration of Ge into a nonopal phase throughout the global ocean in the depth range 0.2-1 km is sufficient to balance the Ge budget. Thus, we tentatively conclude that sequestering of Ge in reducing continental margin sediments is the “missing” Ge sink.  相似文献   

18.
A field study was undertaken on the Florida Bay side of Fiesta Key, Florida, to identify the chemical characteristics of a previously unexplored offshore groundwater system and to define the critical parameters affecting groundwater movement and interaction with sediment pore fluids and bedrock. Emphasis was placed on the upper 2 meters of bedrock, where groundwater recharge and discharge potentials are maximized, along a 100 meter transect extending from the island margin. Bedrock cores were used to describe Pleistocene depositional textures, and were sampled at discrete depths to determine the extent of water-rock interaction. Piezometers installed into each core hole were used to monitor surface and ground water tide levels, and for the systematic collection of water samples for a large suite of chemical determinations.Aqueous chemical data indicate that these groundwaters are marine in origin, anoxic, and moderately hypersaline (S = 36–40). Exchange of bedrock pore fluids with overlying Bay waters is restricted by a layer of Holocene sediment and a discontinuous soilstone crust formed at the modern bedrock surface. Groundwater chemistry near the sediment/bedrock interface is marked by elevated concentrations of total alkalinity and Ca2+, and by significant Mg2+ depletion. These waters likely acquired their unusual chemistry by mixing between deeper groundwaters and overlying, early diagenetically altered, sediment porewaters. High alkalinity and calcium concentrations presumably result from the combination of the effects of aerobic metabolism, carbonate dissolution, and sulfate reduction. Mg-depletion most likely resulted from the precipitation of Mg-calcite. These unusual chemistries disappear by 2 m depth in the groundwater system, where Ca2+ and Mg2+ concentrations are similar to those expected for seawater under slightly hypersaline conditions.The Pleistocene bedrock contains low Mg, Sr, F, and P concentrations relative to the overlying unconsolidated Holocene carbonate sediments. This is consistent with the diagenetic recrystallization processes that the bedrock has undergone. Hydraulic conditions favor the net recharge of Florida Bay seawater to the groundwater system, but there are insufficient tide data to identify cyclical water exchange rates or groundwater flow patterns.  相似文献   

19.
The Wakamiko submarine crater is a small depression located in Kagoshima Bay, southwest Japan. Marine shallow‐water hydrothermal activity associated with fumarolic gas emissions at the crater sea floor (water depth 200 m) is considered to be related with magmatic activity of the Aira Caldera. During the NT05‐13 dive expedition conducted in August 2005 using remotely operated vehicle Hyper‐Dolphine (Japan Agency for Marine‐Earth Science and Technology), an active shimmering site was discovered (tentatively named the North site) at approximately 1 km from the previously known site (tentatively named the South site). Surface sediment (up to 30 cm) was cored from six localities including these active sites, and the alteration minerals and pore fluid chemistry were studied. The pore fluids of these sites showed a drastic change in chemical profile from that of seawater, even at 30 cm below the surface, which is attributed to mixing of the ascending hydrothermal component and seawater. The hydrothermal component of the North site is estimated to be derived from a hydrothermal aquifer at 230°C based on the hydrothermal end‐member composition. Occurrence of illite/smectite interstratified minerals in the North site sediment is attributed to in situ fluid–sediment interaction at a temperature around 150°C, which is in accordance with the pore fluid chemistry. In contrast, montmorillonite was identified as the dominant alteration mineral in the South site sediment. Together with the significant low potassium concentration of the hydrothermal end‐member, the abundant occurrence of low‐temperature alteration mineral suggests that the hydrothermal aquifer in the South site is not as high as 200°C. Moreover, the montmorillonite is likely to be unstable with the present pore fluid chemistry at the measured temperature (117°C). This disagreement implies unstable hydrothermal activity at the South site, in contrast to the equilibrium between the pore fluid and alteration minerals in the North site sediment. This difference may reflect the thermal and/or hydrological structure of the Wakamiko Crater hydrothermal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号