首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary. An overview is taken of the last decade of studies of the effect of earthquakes on the polar motion. The treatment of the liquid outer core in static deformation is reviewed and some misconceptions in a number of papers are pointed out. Volterra's formula is generalized to the case of a liquid core which does not obey the highly idealized Adams—Williamson density law. The focal mechanism representation of Smylie & Mansinha (1971) is corrected for neglected terms arising from coordinate curvature, bringing the computed polar shifts into near numerical agreement with those of other workers. On the basis of the comparison of the observed and computed polar shifts for the Chile 1960 and Alaska 1964 events, it is suggested that the observed polar shifts for large earthquakes may be useful as discriminators in selecting focal mechanism parameters. The observed level of Chandler wobble excitation provides a constraint on some of the more extreme values of seismic moment recently proposed, unless these are supposed to depend only weakly on magnitude. The cumulative effect of the 30 largest earthquakes in the period 1901–64, recently examined by O'Connell & Dziewonski, is found to yield a rms Chandler wobble excitation of 0".10, using the random walk theory of Mansinha & Smylie (1967). This is close to the observed level (∼ 0".15). In addition to yielding the solution to a very long-standing geophysical puzzle, the study of the effect of earthquakes on the polar motion over the last decade may have produced a useful tool for the elucidation of seismic mechanism.  相似文献   

3.
4.
5.
Summary. The equation governing the polar motion shows that the polar secular drift and the Chandler wobble amplitude are related to each other. In particular, a drift of the mean pole position comes out as a consequence of the maintenance of the Chandler wobble by possible step perturbations of the Earth's inertia tensor.
The minimum excitation functions necessary to explain the Chandler wobble amplitude variations for the period 1901–84 are derived from the Chandler term, with the hypothesis that the excitations follow a uniform random distribution in time. It is shown that they have the statistical properties of the steps of a two-dimensional random walk. These functions are then used to derive, from a statistical simulation, a lower limit of the secular drift which may result from the excitation of the Chandler wobble.
The drift generated by the random walk is of the same order of magnitude as the observed secular drift for the period 1901–84, but their time dependence is different. This indicates that the observed secular drift cannot be explained as the consequence of an excitation of the Chandler wobble by random steps of the Earth's inertia tensor. However, the possible contribution of the Chandler wobble excitation to the polar drift has to be taken into account when other mechanisms, such as lithospheric rebound related to deglaciation, are proposed.  相似文献   

6.
Meteorological excitation of the annual polar motion   总被引:2,自引:0,他引:2  
Summary. Numerous studies have indicated that the annual term in the polar motion cannot be explained in any detail by meteorological/hydrological excitation and no reasonable alternative excitations have been put forward. Part of the problem has been that the hydrostatic adjustment of the oceans to the atmospheric pressure changes has traditionally been computed using the inverse barometer approach. This approach does not properly model the gravitational interaction between the atmosphere and oceans, and the inverse barometer theory is modified in this paper to account for this properly. The information necessary to compute the ocean tide and polar excitation caused by any change in the atmospheric pressure pattern is presented. The results of the application of this theory to two global atmospheric pressure data sets are examined and compared to results of other workers.
It is concluded that the atmosphere is observed well enough to answer the question of the annual excitation of polar motion and it is argued that the ground water excitation is the component with the largest error and remains the chief obstacle to the successful solution of this problem.  相似文献   

7.
The change in the inertia tensor of the Earth, due to the mass shift following a seismic event, has been computed by several authors for non-rotating earth models. Rotation is taken into account in the present paper, and the additional change in the inertia tensor is computed for an equivalent earth model, in which the axis of geometrical symmetry becomes tilted instead of the axis of greatest inertia. Rotation is thus seen to produce an increase by a factor 1.4 in the amplitude variation of the Chandler wobble, with respect to the non-rotating case, which, when added to the 1.4 amplitude increase due to the precessional re-adjustment of the equatorial bulge, gives a factor of 2 increase of the Chandler wobble amplitude with respect to the case of a rigid earth model.  相似文献   

8.
Summary. The Chandler wobble Q w, as obtained from the astronomical data cannot be equated with the Q m of the source of damping, as an examination of Chandler wobble energetics reveals. We find that if dissipation occurs in the mantle then Q w≃ 9 Q m, implying that either the mantle Q is frequency dependent or the wobble Q is much larger than 100. If the dissipation is in the oceans then Q w≃ 20 Q o, and the pole tide must be far from equilibrium.  相似文献   

9.
The period and Q of the Chandler wobble   总被引:3,自引:0,他引:3  
Summary. We have extended our calculation of the theoretical period of the Chandler wobble to account for the non-hydrostatic portion of the Earth's equatorial bulge and the effect of the fluid core upon the lengthening of the period due to the pole tide. We find the theoretical period of a realistic perfectly elastic Earth with an equilibrium pole tide to be 426.7 sidereal days, which is 8.5 day shorter than the observed period of 435.2 day. Using Rayleigh's principle for a rotating Earth, we exploit this discrepancy together with the observed Chandler Q to place constraints on the frequency dependence of mantle anelasticity. If Qμ in the mantle varies with frequency σ as σα between 30 s and 14 months and if Qμ in the lower mantle is of order 225 at 30 s, we find that 0.04 ρα≤ 0.11; if instead Qμ in the lower mantle is of order 350 near 200 s, we find that 0.11 ≤α≤ 0.19. In all cases these limits arise from exceeding the 68 per cent confidence limits of ± 2.6 day in the observed period. Since slight departures from an equilibrium pole tide affect the Q much more strongly than the period we believe these limits to be robust.  相似文献   

10.
The period P and Q -value of the Chandler wobble are two fundamental functional of the Earth's internal physical properties and global geodynamics. We revisit the problem of the estimation of P and Q , using 10.8 yr of modern polar motion as well as contemporary atmospheric angular momentum (AAM) data. We make full use of the knowledge that AAM is a major broad-band excitation source for the polar motion. We devise two optimization criteria under the assumption that, after removal of coherent seasonal and long-period signals, the non-AAM excitation is uncorrelated with the AAM. The procedures lead to optimal estimates for P and Q. Our best estimates, judging from comprehensive sets of Monte Carlo simulations, are P = 433.7 ± 1.8 (1σ) days, Q =49 with a la range of (35, 100). In the process we also obtain (as a by-product) an estimate of roughly 0.8 for a 'mixing ratio' of the inverted-barometer (IB) effect in the AAM pressure term, indicating that the ocean behaves nearly as IB in polar motion excitation on temporal scales from months to years  相似文献   

11.
summary . The character of the Chandler wobble suggests that the optimal representation of the observed polar motion is a complex AR.MA model. This paper develops the theory of such a model and presents a modification of the scalar AR.MA computer program of Akaike, Arahata & Ozaki. The complex AR.MA model is applied to the ILS data covering the period 1900–1975. An optimal AR.MA (1,4) model is obtained. The model parameters are interpreted to give a Chandler frequency of 0.8400 ± 0.0039 cpy a Q value of 50 < Q < 300, with the most probable value of 96 and the power density of the excitation to be about 0.51 × (0".01)2/cpy. This result leads to the conclusion that the contribution of meteorological sources to the excitation of the Chandler wobble is about 11 to 19 per cent.  相似文献   

12.
13.
14.
Summary. A direct calculation is made of the effect on the Chandler wobble of 1287 earthquakes that occurred during 1977–1983. The hypocentral parameters (location and origin time) and the moment tensor representation of the best point source for each earthquake as determined by the 'centroidmoment tensor' technique were used to calculate the change in the Chandler wobble's excitation function by assuming this change is due solely to the static deformation field generated by that earthquake. The resulting theoretical earthquake excitation function is compared with the 'observed' excitation function that is obtained by deconvolving a Chandler wobble time series derived from LAGEOS polar motion data. Since only 7 years of data are available for analysis it is not possible to resolve the Chandler band and determine whether or not the theoretical earthquake excitation function derived here is coherent and in phase with the 'observed' excitation function in that band. However, since the power spectrum of the earthquake excitation function is about 56 dB less than that of the 'observed' excitation function at frequencies near the Chandler frequency, it is concluded that earthquakes, via their static deformation field, have had a negligible influence on the Chandler wobble during 1977–1983. However, fault creep or any type of aseismic slip that occurs on a time-scale much less than the period of the Chandler wobble could have an important (and still unmodelled) effect on the Chandler wobble.  相似文献   

15.
The general 3-D scalar equations of motion of the liquid core (with respect to the radial components of displacements and cubic dilatation) are constructed as a superposition of the solutions of ordinary differential equations describing the dynamics of a stably stratified, heterogeneous, compressible and inviscid rotating fluid inside thin spherical layers ( Molodensky & Sasao 1995 ). The estimation of dynamical effects of a homogeneous and incompressible liquid core on the Chandler period (Groten, Lenhardt & Molodensky 1991) is generalized for the case of a heterogeneous, compressible, inviscid and neutrally stratified liquid core.  相似文献   

16.
17.
Summary The theory of wobble excitation for a non-rigid earth is extended to include the effects of the earth's fluid core and of the rotationally induced pole tide in the ocean. The response of the solid earth and oceans to atmospheric loading is also considered. The oceans are shown to be affected by changes in the gravitational potential which accompany atmospheric pressure disturbances and by the load-induced deformation of the solid earth. These various improvements affect the excitation equations by about 10 per cent. Atmospheric and oceanic excitation can be computed using either an angular momentum or a torque approach. We use the dynamical equations for a thin fluid to relate these two methods and to develop a more general, combined approach. Finally, geostrophic winds and currents are shown to be potentially important sources of wobble excitation, in contrast to what is generally believed.  相似文献   

18.
19.
20.
利用辽宁中部地区2012年6月1日至2013年5月31日观测数据,研究了城市大气可吸入颗粒物质量浓度和气象要素的之间的相关性。结果表明:对辽宁中部地区整体来说,秋、冬季的可吸入颗粒物排放在全年贡献比例较大;对区域各城市来说,沈阳和鞍山的颗粒物污染贡献较大。区域颗粒物浓度在午后达到最低,清晨升至最高,而能见度则在这两个时段分别达到最高和最低。颗粒物浓度与相对湿度的变化趋势基本一致,与能见度、气温和风速的变化趋势相反。颗粒物(尤其是大气细粒子)浓度与能见度的相关关系最为显著,这种相关性在夏、秋、冬季更加明显,而在鞍山、本溪两地尤为突出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号