首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the problem of finding the generalized potential function V = U i(q 1, q 2,..., q n)q i + U(q 1, q 2,...;q n) compatible with prescribed dynamical trajectories of a holonomic system. We obtain conditions necessary for the existence of solutions to the problem: these can be cast into a system of n – 1 first order nonlinear partial differential equations in the unknown functions U 1, U 2,...;, U n, U. In particular we study dynamical systems with two degrees of freedom. Using adapted coordinates on the configuration manifold M 2 we obtain, for potential function U(q 1, q 2), a classic first kind of Abel ordinary differential equation. Moreover, we show that, in special cases of dynamical interest, such an equation can be solved by quadrature. In particular we establish, for ordinary potential functions, a classical formula obtained in different way by Joukowsky for a particle moving on a surface.Work performed with the support of the Gruppo Nazionale di Fisica Matematica (G.N.F.M.) of the Italian National Research Council.  相似文献   

2.
It is found that charged particles of positive energiesE, when constrained on axisymmetric isoflux surfaces , execute sinusoidal motions with typical frequencies =(2E/m)1/2). In general, it was found that under equilibrium condition p=J ^B/cthe particles develop a non-ambipolar drift velocityv d =(cµ/eb)[1+q 2 +2(q/)2]p.  相似文献   

3.
The Machian models of isotropic expanding universes according to the “inertia-free” gravo-dynamics imply the equations between the instantan values H0 and q0 of the HUBBLE parameter H, the acceleration q, and the matter density o. Therefore, in Machian universes with linear expansion q0 = 0 the energy integral E = -1/2ϵc2 is zero and the matter density becomes (with H02R02 = c2/3) (f0 the Newtonian gravitational constant). This is the critical density in general relativistic cosmology.  相似文献   

4.
A satellite four-body problem is the problem of motion of an artificial satellite of a planet in a region of the space where perturbations due to the gravitational field of the planet are of the same order as perturbations due to influences of two perturbing bodies. In this paper an expansion of the perturbing function into a Fourier series in terms of angular Keplerian elements ( j , j ,M j :j=0,1,2) (designations are standard) is obtained taking into account a sharp commensurability of the typen/ 0=(p+q)/p (n is the mean motion of the artificial satellite and 0 is the angular velocity of rotation of the planet,p andq are integers).The coefficients of the Fourier series are the functions of the positional Keplerian elements (a j ,e j ,i j ;j=0, 1, 2) (designations are standard) and, in particular, are series in terms ofe j that, generally speaking, can be written out to an accuracy ofe j 19 .The expansion obtained can be used for the construction of a semianalytical theory of motion of resonant satellites on the basis of conditionally periodic solutions of the restricted four-body problem.  相似文献   

5.
It is shown that the equation of motion Du j/Ds = (e/mc 2)F ji u i , a natural generalization to the curved spacetime of the Heaviside-Lorentz law of ponderomotive force, is equivalent to the metric independent and covariant Van Dantzig's equations of motion dx j [jpi] = 0 or L v p i = 0, where p i is the conjugate momentum 4-vector and v a vector determined by the condition p i v i, only with respect to holonomic coordinates. With respect to an anholonomic system, the Heaviside-Lorentz equation is a particular case of the VD equations valid for a privileged class of anholonomic frames, those consisting of orthogonal unit vectors.  相似文献   

6.
The aim of the paper is to study the geometry of the Roche curvilinear coordinates (, , ) in the photogravitational circular restricted three-body problem, with varying radiation pressure, and special attention is given to the geometry of zero-velocity curves specified by the coordinate. The radiation pressure exerted by the primary bodies on the infinitesimal third body is considered the same (q 1 =q 2), and the primaries are taken to have equal masses (m 1 =m 2). The full range of values of the common radiation factor is explored, from the valueq 1 =q 2 = 1 (the gravitational three-body problem) down toq 1 =q 2 0. It is found that radiation has a strong influence on the geometry of the Roche coordinates and the zero-velocity curves.  相似文献   

7.
This paper considers the integrability of generalized Yang-Mills system with the HamiltonianH a (p, q)=1/2(p 1 2 +p 2 2 +a 1 q 1 2 +a 2 q 2 2 )+1/4q 1 4 +1/4a 3 q 2 4 + 1/2a 4 q 1 2 q 2 2 . We prove that the system is integrable for the cases: (A)a 1=a 2,a 3=a 4=1; (b)a 1=a 2,a 3=1,a 4=3; (C)a 1=a 2/4,a 3=16,a 4=6. Our main result is the presentation of these integrals. Only for cases A and B does the Yang-Mills Hamiltonian possess the Painlevé property. Therefore the Painlevé test does not take account of the integrability for the case C.  相似文献   

8.
It has been shown that the mass of neutron stars obtained from equations of state based on nuclear theory depend upon the number of baryons assembled in it but not on the type of interactions considered. On examining the behaviour of different equations of state based on nuclear theories, a simple polytropic equation of state,P = (K/N)(pp s)N is proposed. The results obtained forN=1.75 cover the entire range of neutron star masses obtained from the equations of state based on nuclear theories and give a maximum mass of 2.8M . Depending upon various mechanisms for energy output the mass of Crab pulsar is estimated to range from 0.32M to 1.5M . The relation connecting the coordinate mass,M, and the rest mass,M 0, may be written asM/M 0.93 (M 0/M)0.9.  相似文献   

9.
It is shown that, to any change of variables:q i=qi(r, t) (i=1,..., n; =1,...,n+m; mn) increasing the number of variables, it is possible to associate a Mathieu's transformation and conversely. The results are applied to the theory of the osculating plane of motion.
Resumé On montre qu'à toute transformation:q i=qi(r, t)(i=1,..., n; =1,...,n+m; mn) augmentant le nombre de variables, on peut associer une transformation de Mathieu et réciproquement. Les résultats sont appliqués à la théorie du plan osculateur du mouvement.
  相似文献   

10.
A nonlinear theory of secular resonances is developed. Both terms corresponding to secular resonances 5 and 6 are taken into account in the Hamiltonian. The simple overlap criterion is applied and the condition for the overlap of these resonances is found. It is shown that in given approximation the value p = (1 - e2)1/2(1 - cosI) is an integral of motion, where the mean eccentricity e and mean inclination I are obtained by eliminating short-period perturbations as well as the nonresonant terms from the planets. The overlap criterion yields a critical value of parameter p depending on the semi-major axis a of the asteroid. For p greater than the critical value, resonance overlap occurs and chaotic motion has to be expected. A mapping is presented for fast calculation of the trajectories. The results are illustrated by level curves in surfaces of section method.  相似文献   

11.
The purpose of this paper is to present a general analysis of the planar circular restricted problem of three bodies in the case of exterior mean-motion resonances. Particularly, our aim is to map the phase space of various commensurabilities and determine the singular solutions of the averaged system, comparing them to the well-known case of interior resonances.In some commensurabilities (e.g. 1/2, 1/3) we show the existence of asymmetric librations; that is, librations in which the stationary value of the critical angle =(p+q)1pq is not equal to either zero or . The origin, stability and morphogenesis of these solutions are discussed and compared to symmetric librations. However, in some other resonances (e.g. 2/3, 3/4), these fixed points of the mean system seem to be absent. Librations in such cases are restricted to =0 mod(). Asymmetric singular solutions of the planar circular problem are unkown in the case of interior resonances and cannot be reproduced by the reduced Andoyer Hamiltonian known as the Second Fundamental Model for Resonance. However, we show that the extended version of this Hamiltonian function, in which harmonics up to order two are considered, can reproduce fairly well the principal topological characteristics of the phase space and thereby constitutes a simple and useful analytical approximation for these resonances.  相似文献   

12.
In order to determine the mass-ratio distribution of spectroscopic binary stars, the selection effects that govern the observations of this class of binary systems are investigated. The selection effects are modelled numerically and analytically. The results of the models are compared to the data inThe Eighth Catalogue of the Orbital Elements of Spectroscopic Binary Stars (DAO8) compiled by Battenet al. (1989). The investigations involve binary systems with Main-Sequence primary components only, in order to avoid confusion of evolutionary and selection effects.For single-lined spectroscopic binaries (SBI) it is found that the mass ratios (q=M sec/M prim) in general adhere to a distribution q q -2 forq>q 0, withq 0=0.3. The observations are consistent with a distribution that is flat forq<q 0. The turn-over value varies fromq 0=0.3 for systems with B-type primaries, toq 0=0.55 for systems with K-type primaries. The semi-major axesa 1 are distributed according to a (a 1)a 1 -a with an average value of a =1.3. The power varies from a =1.7 for systems with B-type primaries to a =0 for systems with K-type primaries. The eccentricitiese of the orbits of SBI systems are distributed according to e (e)e -1.For double-lined spectroscopic binary stars (SBII) it is found that the shape of theq-distribution, as derived from observations, is almost entirely determined by selection effects. It is shown that the distribution is compatible with theq-distribution found for SBI systems. A sub-sample, consisting of the SBII systems from DAO8 with magnitudesm V 5 m , is less hampered by selection effects, and shows the same shape of theq-distribution as the SBI systems, at theq-interval (0.67, 1).It is estimated that 19–45% of the stars in the solar neighbourhood are spectroscopic binary systems.  相似文献   

13.
The purpose of this paper is to extend the study of the so called p-q resonant orbits of the planar restricted three-body problem to the spatial case. The p-q resonant orbits are solutions of the restricted three-body problem which have consecutive close encounters with the smaller primary. If E, M and P denote the larger primary, the smaller one and the infinitesimal body, respectively, then p and q are the number of revolutions that P gives around M and M around E, respectively, between two consecutive close approaches. For fixed values of p and q and suitable initial conditions on a sphere of radius around the smaller primary, we will derive expressions for the final position and velocity on this sphere for the orbits under consideration.  相似文献   

14.
An idea is developed that the vacuum in the gravitational field acquires properties of an elastic medium described by a definite tension ik . The vacuum is stated to also participate in the formation of the space-time metric, together with the usual matter. So, the matter, vacuum and metric form a complex unity determined by the solution of the field equations. The vacuum may prove to play an essential role in the extremely strong fields existing in superdense celestial bodies. The tensor ik is not to be identified with the pseudo-tensor of the energy-momentum of the gravitational field the idea of which is preserved.The problem of vacuum is investigated in the case of the central symmetry static field. A number of properties of the tensor ik is found using the symmetry of the field and comparison with the post-Newton limit. The external and internal problems, as well as the procedure of joining the solutions on the surface of a celestial body, have been formulated. The stellar surface is determined in the usual way:P(r) = 0 whereP is the matter pressure. The theory includes three dimensionless parametersa=p/,b=p / (,p, p are the density of the vacuum energy and of its pressures in the radial and transverse directions) and determining the vacuum elastic properties. Generally speaking, they depend on the valueP/c2 in the stellar centre where is the mass density. From general physical considerations it is shown that 0 1 + lim P (l/q). The field equations are solved for the simple version of the theoryb=–a. There are solutions corresponding to superdense celestial bodies with masses considerably exceeding that of the Sun.  相似文献   

15.
Two models for superluminal radio sources predict sharp lower bounds for the apparent velocities of separation. The light echo model predicts a minimum velocityv min=2c, and the dipole field model predictsv min=4.446c. Yahil (1979) has suggested that, if either of these models is correct, thenv min provides a standard velocity which can be used to determine the cosmological parametersH andq 0. This is accomplished by estimating a lower envelope for the proper motion vs redshift relation. Yahil also argued that the procedure could easily be generalized to include a nonzero cosmical constant . We derive the formulas relating the proper motion to the redshiftz in a Friedmann universe with a nonzero . We show that the determination of a lower envelope for a given sample of measured points yields an estimate of the angle of inclination i for each source in the sample. We formulate the estimation of the lower envelope as a constrained maximum likelihood problem with the constraints specified by the expected value of the largest order statistic for the estimated i . We solve this problem numerically using an off-the-shelf nonlinearly constrained nonlinear optimization program from the NAg library. Assuming =0, we apply the estimation procedure to a sample of 27 sources with measured values , using both the light echo and the dipole field models. The fits giveH=103 km s–1 Mpc–1 for the light echo model andH=46 km s–1 Mpc–1 for the dipole field model. In both cases the fits giveq 0=0.4, but the uncertainty in this result is too large to rule out the possibility thatq 0>0.5. When is allowed to be a free parameter, we obtainH=105 km s–1 Mpc–1 for the light echo model andH=47 km s–1 Mpc–1 for the dipole field model. In both cases the fits giveq 0=–1 and /H 0 2 =6.7, but no significance can be attached to these results because of the paucity of measured data at hight redshifts. For all of the fits, we compute the corresponding estimates of the i and compare the cumulative distribution of these values with that expected from a sample of randomly oriented sources. In all cases we find a large excess of sources at low-inclination angles (high apparent velocities). The expected selection effect would produce such an excess, but the excess is large enough to suggest a strong contamination of the sample by relativistic beam sources which would only be seen at low inclination angles.Applied Research Corporation  相似文献   

16.
Previously, we have considered the equations of motion of the three-body problem in a Lagrange form (which means a consideration of relative motions of 3-bodies in regard to each other). Analysing such a system of equations, we considered the case of small-body motion of negligible mass m 3 around the second of two giant-bodies m 1, m 2 (which are rotating around their common centre of masses on Kepler’s trajectories), the mass of which is assumed to be less than the mass of central body. In the current development, we have derived a key parameter η that determines the character of quasi-circular motion of the small third body m 3 relative to the second body m 2 (planet). Namely, by making several approximations in the equations of motion of the three-body problem, such the system could be reduced to the key governing Riccati-type ordinary differential equations. Under assumptions of R3BP (restricted three-body problem), we additionally note that Riccati-type ODEs above should have the invariant form if the key governing (dimensionless) parameter η remains in the range 10?2 Open image in new window 10?3. Such an amazing fact let us evaluate the forbidden zones for Moon’s orbits in the inner solar system or the zones of distances (between Moon and Planet) for which the motion of small body could be predicted to be unstable according to basic features of the solutions of Riccati-type.  相似文献   

17.
In the solar wind, electrostatic ion cyclotron waves can be excited by electrons when the flow velocity becomes supersonic. The waves reduce the proton temperature anisotropy and heat the protons effectively. Temperature equations for T e ,T p and T p are solved numerically in the region from 1 AU to the Sun, with the non-thermal proton heating rate included as a parameter. Distributions of T e ,T p , T p and the proton heating rate are determined and found to be in good agreement with the proton heating rate expected from the linear growth rate of electrostatic ion cyclotron waves. The electron thermal conductivity is reduced approximately 2–3 times smaller than the usual collisional one due to the plasma wave instabilities. Effective energy exchange rates from proton-proton and electron-proton interactions are 1–10 and 10–100 times larger than the Coulomb collision rates v ppand v ep,respectively.  相似文献   

18.
A. A. Saaryan 《Astrophysics》1995,38(2):164-175
We consider multi-dimensional cosmological models in the low-energy field theory of strings with a boson gravitational sector containing a metric, dilaton field, and antisymmetric Kalb-Ramon field. We study the conformal properties of the action and show that in the general conformal representation the theory is equivalent to a generalized scalar-tensor theory with a Lagrangian of nongravitating matter dependent on the dilaton. We find exact solutions of the flat homogeneous anisotropic model with structure R×M1×...×Mn and with equation of state pi=ai in the space Mi. We discuss the picture of cosmological evolution in different conformal representations.Translated fromAstrofizika, Vol. 38, No. 2, 1995.  相似文献   

19.
In the present paper n 0 , for occulation and transit eclipses of partial phases, are evaluated numerically by means of the Runge-Kutta methods. Section 2 contains the required differential equations of n 0 with respect to the modulusX orC, and Section 3 includes the numerical method of the solutions of these differential equations. Theoretical values of 0 0 and 1 0 , with corresponding values ofC, are also added in this section.  相似文献   

20.
According to the classical theory of equilibrium figures surfaces of equal density, potential and pressure concur (let call them isobars). Isobars may be represented by means of Liapunov power series in small parameter q, up to the first approximation coincident with centrifugal to gravitational force ratio on the equator. A. M. Liapunov has proved the existence of the universal convergence radius q : above mentioned series converge for all bodies if q < q . Using Liapunov's algorithm and symbolic calculus tools we have calculated q = 0.000370916. Evidently, convergence radius q 0 may be much greater in non-pathological situations. We plan to examine several simplest cases. In the present paper, we find q 0 for homogeneous liquid. The convergence radius turns out to be unexpectedly large coinciding with the upper boundary value q 0 = 0.337 for Maclaurin ellipsoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号