首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock–pin interaction and classification of rock abrasion.  相似文献   

2.
基于UDEC的隧道掘进机滚刀破岩数值模拟研究   总被引:2,自引:0,他引:2  
现今全断面隧道掘进机(TBM)施工方法在长大深埋隧道工程中已被广泛采用,对滚刀破岩关键技术的进一步认识具有重要的工程价值。为了研究滚刀破岩机制,分析刀圈断面形态、岩石强度和节理角度对其的影响,运用UDEC方法建立了滚刀贯切岩石的二维数值系列模型,对TBM滚刀破岩过程进行了仿真。分析表明:滚刀破岩是滚刀下岩石拉破坏和剪破坏的综合反映,拉破坏是裂纹萌生与扩展的主要驱动机制;刃宽较大的平刀与刃角较大的楔刀破岩效果较好;平刀与楔刀在软岩中破岩效果相近,平刀在硬岩施工中比楔刀的破岩效果好;滚刀对节理角度为30°~60°的岩石破坏效果较好,由于楔刀的“劈裂”作用,楔刀比平刀更适合用于贯切含有节理的岩石。  相似文献   

3.
卵石土等效弹性模量理论预测模型初探   总被引:1,自引:0,他引:1  
马辉  高明忠  张建康  余其福 《岩土力学》2011,32(12):3642-3646
卵石土是由卵石和土组成的、处于土和岩体之间的天然地质体,但其宏观力学特性完全不同于土和岩体。通过对成都地铁1号线隧道掘进机(TBM)施工现场调查可知,卵石地层可导致TBM刀具过量磨损、刀盘堵塞等非正常损坏,极大地影响了TBM施工效率,是TBM掘进极其不利的一种典型混合工作面。主要研究卵石土变形性能,建立在均匀应变基础上,假设卵石为理想圆形或椭圆形,从理论上得到卵石土等效弹性模量的解析预测公式。并通过数值试验验证了理论预测模型的有效性。结果表明,此模型预测结果与试验数据比较接近,可用来初步判断卵石地层等效弹性模量,有助于理解并提高该地层中的TBM掘进效率。  相似文献   

4.
Summary. The evaluation of the rock mass mechanical properties by the seismic reflection method and TBM driving is proposed for TBM tunnelling. The relationship between the reflection number derived from the three-dimensional seismic reflection method and the rock strength index (RSI) derived from TBM driving data is examined, and the methodology of conversion from the reflection number to the RSI is proposed. Furthermore a geostatistical prediction methodology to provide a three-dimensional geotechnical profile ahead of the tunnel face is proposed. The performance of this prediction method is verified by actual field data.  相似文献   

5.
The problem of disc cutter wear is inevitable when shield or TBM excavating hard rock for a long distance, thus, the study of disc cutter wear model has an important project value on predicting its service life and replacement opportunity. It is put forward by analyzing disc cutter wear mechanism that the main wear form is abrasive wear, which is based on plastic removal mechanism. Then, disc cutter wear rate and linear wear rate prediction models are obtained by approximate calculation and mathematical deduction, which are based on Rabinowicz equation and CSM model. At last, the two models are verified through field test data from three projects, and the results show that the prediction model can accurately reflect the real wear situation of disc cutter.  相似文献   

6.
Summary. Tunnel face and wall collapse are common during excavations performed by tunnel boring machines (TBMs) due to the difficulty of correctly identifying the properties of the excavated rock. This identification, however, can be simplified by using the cutting force to estimate rock strength, a method that has already proved quite successful in Japanese tunnel excavations. This paper summarizes knowledge relating to the cutting force obtained through tunnel excavation experience, and the relationship between rock strength and TBM operation is discussed. Although TBM operators rely on intuition to set the cutter head speed appropriately, this decision process represents a logical method of operation that takes advantage of the variable speed capability of the cutter head. Selection of appropriate support methods for the excavated face is also a critical issue in tunnel excavation. This selection process is based on the condition of the rock, which is difficult to determine quickly and accurately during tunnel excavation. The present paper uses the excavation of two tunnels to demonstrate that it is possible to assign rock mass classifications accurately based on rock strength when boring a uniform rock type. It is also shown that the rock mass can be classified from the rock strength normalized by the uniaxial compressive strength when boring through mixed rock types.  相似文献   

7.
The competency of any TBM in any geological condition is determined by a rock or rock mass breakage process. A 12.24 km long tunnel between Maroshi and Ruparel College was excavated by Brihanmumbai municipal corporation (BMC) to improve water supply system of greater Mumbai, India, using open-type hard rock tunnel boring machines (TBMs). In this paper an attempt has been made to establish the relationship between rock mass characteristics i.e. RMR and UCS of the Deccan trap rocks and TBMs performance characteristics for 5.83 km long Maroshi–Vakola tunnel section of the Maroshi–Ruparel college tunnel project. To analyze the effect of variable rock mass conditions on the TBM performance, the operating parameters i.e. thrust force, torque and RPM of the machine, were recorded and intact rock strength was determined. The effect of rock mass properties on machine penetration rate (PR) and the relation with other operational parameters were analyzed. The rock strength affects the rock behaviour under compression. When the rolling cutters indent the rock, the stress exerted must be higher than the rock strength i.e.; the rock strength is directly relevant to the performance of TBM. Studies show that the penetration rate decreases with increase in uniaxial compressive strength (UCS). The comparison of measured penetration rate with empirical model developed by Graham, in which, the penetration rate is computed using UCS and average thrust per cutter, showed good agreement with coefficient of determination (R2), i.e. 0.97. The study shows that the TBM performance was maximum in rock mass rating (RMR) range from 40 to 75, while slower penetration was recorded both in very poor and very good rock masses.  相似文献   

8.
Pan  Yucong  Liu  Quansheng  Kong  Xiaoxuan  Liu  Jianping  Peng  Xingxin  Liu  Qi 《Acta Geotechnica》2019,14(4):1249-1268

In this study, determination of some machine parameters and performance prediction for tunnel boring machine (TBM) are conducted based on laboratory rock cutting test. Firstly, laboratory full-scale linear cutting test is carried out using 432-mm CCS (constant cross section) disc cutter in Chongqing Sandstone. Then, the input parameters for TBM cutterhead design are extracted; some TBM specifications are determined and then compared to the manufactured values. Finally, laboratory full-scale linear cutting test results are compared with the field TBM excavation performance data collected in Chongqing Yangtze River Tunnel. Results show that laboratory full-scale linear cutting test results, combined with some engineering considerations, can be used for the preliminary and rough design of TBM machine capacity. Meanwhile, combined with some modification factors, it can also well predict the field TBM excavation performance.

  相似文献   

9.
使用隧道掘进机(TBM)开挖隧道时刀盘和盾体阻碍了对岩石状态的观察,这时可使用岩渣对岩石条件进行预测和评价。从滚刀破碎掌子面产生的岩渣中选取块状岩石进行点荷载试验可以获得岩石强度,但是受过滚刀损伤作用的岩石强度值与未受损伤的岩石强度值之间的关系尚不明确。从吉林引松供水工程TBM破岩产生的岩渣中挑选块状试样进行点荷载试验,同时在产生岩渣的相应位置钻取岩芯获取点荷载强度,与单轴抗压强度进行了对比,记录了取样地点地质状态、试样的尺寸、破碎状态以及等效断裂面积。结果表明:岩渣中的岩块受到滚刀作用产生的损伤强度值有所下降,为完整取芯试样的63.25%,原岩越完整受损程度越大;灰岩点荷载强度换算岩石单轴抗压强度系数约为25.3,直接使用岩渣时建议系数约为42.1;峰值荷载与等效断裂面积成正比;尺寸过大的试块往往与岩体原有裂隙有关,强度极低,不适宜用作点荷载试验。研究结果为TBM隧道现场快速获取岩石强度参数提供了方法和依据。  相似文献   

10.
基于颗粒流模型的TBM滚刀破岩过程数值模拟研究   总被引:8,自引:2,他引:6  
苏利军  孙金山  卢文波 《岩土力学》2009,30(9):2823-2829
为了研究全断面岩石掘进机(TBM)盘型滚刀的破岩机制及其影响因素,采用颗粒流方法建立了岩石与滚刀的二维数值模型,实现了对TBM滚刀破岩过程的模拟。分析表明,滚刀的破岩过程可分为冲击挤压破碎、大量微裂纹生成、张拉性主裂纹扩展3个阶段,证实了滚刀破岩的挤压-张拉破坏理论。在滚刀侵入深度相同的前提下,随着刀圈刃角以及刃宽的增加,滚刀下的压碎区也相应增大,张拉性主裂纹数目增多,滚刀的破岩能力提高;与平刃刀圈相比,楔刃刀圈的“楔块劈裂”作用更加显著,使径向裂纹扩展得更快且更深入岩石内部。TBM滚刀对强度较高或较低岩石的破坏损伤较小,而对中等强度的岩石破坏损伤最为显著。  相似文献   

11.
Summary  Basic principles of the theory of rock cutting with rolling disc cutters are used to appropriately reduce tunnel boring machine (TBM) logged data and compute the specific energy (SE) of rock cutting as a function of geometry of the cutterhead and operational parameters. A computational code written in Fortran 77 is used to perform Kriging predictions in a regular or irregular grid in 1D, 2D or 3D space based on sampled data referring to rock mass classification indices or TBM related parameters. This code is used here for three purposes, namely: (1) to filter raw data in order to establish a good correlation between SE and rock mass rating (RMR) (or tunnelling quality index Q) along the chainage of the tunnel, (2) to make prediction of RMR, Q or SE along the chainage of the tunnel from boreholes at the exploration phase and design stage of the tunnel, and (3) to make predictions of SE and RMR or Q ahead of the tunnel’s face during excavation of the tunnel based on SE estimations during excavation. The above tools are the basic constituents of an algorithm to continuously update the geotechnical model of the rock mass based on logged TBM data. Several cases were considered to illustrate the proposed methodology, namely: (a) data from a system of twin tunnels in Hong Kong, (b) data from three tunnels excavated in Northern Italy, and (c) data from the section Singuerlin-Esglesias of the Metro L9 tunnel in Barcelona. Correspondence: G. Exadaktylos, Department of Mineral Resources Engineering, Technical University of Crete, Chania, Greece  相似文献   

12.
 Usually the main subject in preliminary site investigations prior to tunnelling projects is the prediction of tunnel stability. During the past years in conventional drill and blast tunnelling, problems have occurred also connected to the accurate prediction of drillability in hard rock. The drillability is not only decisive for the wear of tools and equipment but is – along with the drilling velocity – a standard factor for the progress of excavation works. The estimation of drillability in predicted rock conditions might bear an extensive risk of costs. Therefore, an improved prediction of drilling velocity and bit wear would be desireable. The drillability of a rock mass is determined by various geological and mechanical parameters. In this report some major correlations of specific rock properties and especially geological factors with measured bit wear and drilling velocity are shown. Drilling velocity is dependent on a lot of geological parameters: Those principal parameters include jointing of rock mass, orientation of schistosity (rock anisotropy), degree of interlocking of microstructures, porosity and quality of cementation of clastic rock, degree of hydrothermal decomposition and weathering of a rock mass. Drilling bit wear increases with the equivalent quartz content. The equivalent quartz content builds the main property for the content of wear-relevant minerals. For various groups of rock types different connections with the equivalent quartz content could be detected. In sandstone bit wear is also dependent on porosity or the quality of the cementation. Finally, an investigation program is submitted, which helps to improve the estimation of rock drillability in planning future tunnel projects. Received: 14 June 1996/Accepted: 10 January 1997  相似文献   

13.
全断面硬岩隧道掘进机(tunnel boring machine, TBM)对岩体条件极其敏感,且其前期投入较大,准确地评估岩体可掘性、预测TBM掘进性能对TBM隧道施工至关重要。基于来自中国、伊朗两国涵盖3种不同岩性的5条TBM施工引水隧洞约300组现场数据,以现场贯入度指数FPI为岩体可掘性评价指标,分析了岩石单轴抗压强度UCS、岩体完整性指数 、岩体主要结构面与洞轴线的夹角?、隧洞直径D等与岩体可掘性之间的关系;探讨了适用于岩体可掘性研究的岩体参数统一方法,进一步建立了精度较高的(相关系数为0.768)岩体可掘性经验预测方法。基于该预测方法,运用K中心聚类分析方法,将岩体可掘性分为6类,探讨了不同岩体可掘性条件下TBM平均单刀推力、刀盘转速分布规律,相应成果可为实际工程中TBM施工隧洞岩体可掘性评估、掘进参数的选择、施工进度的安排提供一定的指导。  相似文献   

14.
高磨蚀性致密砂层中盾构刀具磨损严重制约施工效率。为准确预测大直径泥水盾构刮刀的磨损量与削掘距离寿命,本文采用隧道断面面积统计分析法和分段体积统计分析法对苏通GIL综合管廊工程DK0+~DK1+780段隧道所穿越的密实复合砂层进行统计分析。结合典型断面各地层面积权重,分段各地层体积权重及单一地层磨耗系数K得到了隧道穿越密实复合砂层各典型截面和分段上加权平均磨耗系数K'及其变化规律。根据加权平均磨耗系数K'及相应刀具磨损模型,对大直径泥水盾构在密实复合砂层中刀具磨损量及削掘距离寿命进行预测。并将预测结果与类似工程地质条件下南京长江隧道大直径泥水盾构实际施工过程中刀具磨损量及削掘距离寿命进行比较。研究结果表明:加权平均磨耗系数K'随掘进里程增加整体呈逐渐增大趋势,在1778m处取得最大值K'max=18.36×10-3mm·km-1;刀具最严重磨损发生在安装直径D=12.07m处。取限定磨损量δ=5mm,对应的削掘距离寿命分别为L1=1063m和L2=453m,因此需要进行两次刀具更换。与南京长江隧道泥水盾构刀具实际磨损情况的对比表明预测结果具有较高的可靠性。该研究成果为苏通GIL综合管廊工程及类似地层条件下越江隧道盾构刀具磨损预测及更换提供了一定的理论依据。  相似文献   

15.
Summary Seismic monitoring from the head of a tunnel-boring machine (TBM) enables improved assessment of the risks associated with the tunnel-boring process. The monitoring system provides a live image of ground conditions along the trajectory followed by the TBM and detects local heterogeneities such as boulders, foundations, and other obstacles that commonly pass undetected using local geotechnical techniques. From a seismic perspective, the underground setting of tunnelling projects places limitations on imaging capability. The principal limiting factor is the size of the area upon which transducers can be installed. This limitation requires adjustments to traditional seismic imaging techniques in which a large area is assumed to be available for attaching the transducers. Recently developed short imaging operators take this limitation into account and are used in the examples described herein. The unique conditions of tunnelling yield two advantages over traditional settings in terms of imaging: rotation of the cutter wheel and the lateral progression of the TBM. Rotation of the cutter wheel, upon which the transducers are installed, provides the opportunity to illuminate obstacles from different angles in different recordings. Spatial progression of the TBM enables improvement in the illumination of obstacles and the signal-to-noise ratio by combining recordings from different lateral positions. In this paper, these specific aspects of seismic imaging during tunnelling are discussed via models that represent different cases encountered in actual tunnelling projects. These case studies demonstrate the way in which image quality along the trajectory of the TBM is improved over that in traditional settings. In this way, the risks associated with the tunnelling process can be more accurately assured.  相似文献   

16.
刘泉声  彭星新  黄兴  雷广峰  魏莱  刘鹤 《岩土力学》2018,39(9):3406-3414
全断面隧道掘进机(简称TBM)在穿越深部软弱地层时围岩收敛变形较大,围岩容易挤压护盾,导致TBM卡机,影响TBM正常掘进。通过分析TBM卡机灾害孕育过程,得到了预测TBM卡机的重要条件:一是围岩变形量大于预留的空间,二是额定推力不能克服摩擦阻力。为了监测实际工程TBM卡机状态,提出了一种监测护盾变形的方案以及护盾受力的计算方法,可通过监测得到的变形估算护盾的受力,进而计算出护盾受到的摩擦阻力,得到TBM卡机的状态。根据TBM受到的摩擦阻力、TBM正常掘进时所需推力和TBM额定推力之间的关系,将TBM卡机状态分为4个等级,即无卡机、轻微卡机、卡机和严重卡机,并提出了对应的处理措施。结合TBM卡机条件以及护盾受力监测方案,提出了TBM卡机灾害预警流程。在兰州水源地输水隧洞工程中应用了该监测方案和卡机灾害预警流程,应用结果表明,预测的卡机状态与TBM实际状态基本一致,说明该方法具有一定的可靠性,对指导TBM隧道施工具有重要意义。  相似文献   

17.
岩碴是岩-机作用的直接产物,也是评价隧道掘进机(TBM)破岩效率和优化TBM掘进参数的有效指标。依托兰州水源地建设工程和龙岩万安溪引水工程,开展不同岩性条件下TBM岩碴筛分试验,得到了岩碴粒径分布规律。基于新表面理论,从滚刀破岩能量转化角度出发,提出了一种新的TBM破岩效率评价指标。基于岩碴粒径分布规律和TBM掘进参数统计,探讨了新表面理论指标与比能、岩碴粗糙度指数之间的关系,指出了新表面理论指标在反映岩碴破碎程度和评价TBM破岩效率方面的优势。对新表面理论指标与TBM掘进推力以及刀间距s与贯入度p的比值进行回归分析,得到了硬岩(围岩等级为Ⅱ级)和软岩(围岩等级为III级)掘进条件下的TBM最优掘进推力和s/p取值区间。研究表明:(1)新表面理论指标符合岩石破碎学原理,可准确评价TBM破岩效率。岩碴越是破碎,新表面理论指标越大,掘进能耗越高,此时TBM破岩效率相对较低。(2)新表面理论指标与比能、岩碴粗糙度指数均具有良好的线性相关关系。岩碴越是破碎,破碎单位体积岩石的能量消耗越大,新表面理论指标越大,对应的粗糙度指数越小。软岩掘进条件下TBM掘进比能低于硬岩,而岩碴破碎程度高于硬岩。(...  相似文献   

18.
The Cerchar abrasivity index (CAI) is one of the most widely known index method for identification of rock abrasivity. It is a simple and fast testing method providing reliable information on rock abrasiveness. In this study, the relationships between the CAI and some rock properties such as uniaxial compressive strength (UCS), point load strength, Brazilian tensile strength and Schmidt rebound hardness, and equivalent quartz content (EQC) are examined. The relationships between the CAI and drill bit lifetime is also investigated and the type of drill bit wear observed is mentioned. Additionally, the CAI is modeled using simple and multiple linear regression analysis based on the rock properties. Drill bit lifetime is also modeled based on the CAI. The results show that the CAI increases with the increase of the UCS, point load strength, Brazilian tensile strength, L-type and N-type Schmidt rebound hardness, and the EQC. It is concluded that the higher and the lower bit lifetime are obtained for marl and andesitic-basaltic formation, respectively. Moreover, flushing holes, inserted button, button removal, and failures of button on the bits are determined as the type of drill bit wear. The modeling results show that the models based on the UCS and the EQC give the better forecasting performances for the CAI.  相似文献   

19.
This is a case study of a Tunnel Boring Machine (TBM) jamming in a section of the Connection Works No. 7 tunnel of the Yellow River Diversion Project (YRDP) in China. Analysis of tunnel lithology, rock convergence by shearing, rock strength and ground stress, indicates that a high rate of convergence within an inter-layer shear zone in the lower part of an anticline was a dominant factor in the jamming. In addition, the shield encountered unfavorable tunnelling conditions in the form of wet clay, groundwater inflow, and cavities, coincident with tensile stresses in the lower part of an adjacent syncline. Based on these diagnoses, economical and quick measures were adopted, including additional excavation outside of the shield leaving free space to release the TBM. After 9 days of being jammed, the TBM was totally released and resumed normal excavation. This example highlights lessons learned from folding and inter-layer shear zone in TBM tunnelling.  相似文献   

20.
为了研究岩体节理参数(节理间距和节理倾角)对全断面岩石掘进机(TBM)盘形滚刀破岩效果的影响,对实际条件进行简化,在改进的试验装置上进行压头作用下相似材料的变形、破坏试验。采集整个加载过程中压头的侵入深度和荷载数据,并采用相机实时拍摄,获得试件表面破坏的发展过程以及最终破坏形态。试验结果表明,当节理倾角一定时,随着节理间距增大,达到跃进点的贯入荷载值增加,侵入功以及主裂纹扩展能量也都呈增大趋势,当 =0°、90°时,抗侵入系数基本一致,当 = 30°、60°时,抗侵入系数逐渐增大。当节理间距一定时,随着 角度的增加,跃进点荷载、抗侵入系数、侵入功以及主裂纹扩展能量都呈现先减小后增大趋势,在 =30°时,各值都为最小值。根据试件破坏后形态分析发现,节理的空间特征对裂纹扩展模式有明显的控制作用,对破坏区域的形成也有明显的限制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号