首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly fractionated granites: Recognition and research   总被引:17,自引:0,他引:17  
Granite is one of the most important components of the continental crust on our Earth; it thus has been an enduring studied subject in geology. According to present knowledge, granite shows a great deal of heterogeneity in terms of its texture, structure, mineral species and geochemical compositions at different scales from small dike to large batholith. However, the reasons for these variations are not well understood although numerous interpretations have been proposed. The key point of this debate is whether granitic magma can be effectively differentiated through fractional crystallization, and, if so, what kind of crystallization occurred during the magmatic evolution. Although granitic magma has high viscosity because of its elevated SiO2 content, we agree that fractional crystallization is effectively processed during its evolution based on the evidence from field investigation, mineral species and its chemical variations, and geochemical compositions. These data indicate that crystal settling by gravitation is not the only mechanism dominating granitic differentiation. On the contrary, flow segregation or dynamic sorting may be more important. Accordingly, granite can be divided into unfractionated, fractionated (including weakly fractionated and highly fractionated) and cumulated types, according to the differentiation degree. Highly fractionated granitic magmas are generally high in primary temperature or high with various volatiles during the later stage, which make the fractional crystallization much easier than the common granitic melts. In addition, effective magmatic differentiation can be also expected when the magma emplaced along a large scale of extensional structure. Highly fractionated granitic magma is easily contaminated by country rocks due to its relatively prolonged crystallization time. Thus, granites do not always reflect the characteristics of the source areas and the physical and chemical conditions of the primary magma. We proposed that highly fractionated granites are an important sign indicating compositional maturity of the continental crust, and they are also closely related to the rare-elemental (metal) mineralization of W, Sn, Nb, Ta, Li, Be, Rb, Cs, REEs, etc.  相似文献   

2.
Extreme fractionation of minor and trace elements commonly accompanies very modest changes in major element concentrations in highly felsic igneous sequences. In such sequences, Si increases by only a few percent while, for example, Sr, Ba, Mg, and light rare earth elements decrease drastically, commonly by a factor of 10 or more. It has been argued, most notably by Hildreth (e.g. [1]), that such trends observed in tuffs were not induced by fractional crystallization (FC), but rather are a manifestation of compositional gradients in parental magma chambers which form via liquid-state thermogravitational diffusion (LSTD). The strongest arguments against FC are that (1) crystal settling is not a viable mechanism for crystal-liquid separation, and (2) extensive recrystallization is required to produce the observed trends, yet the tuffs are relatively crystal-poor. Many workers have noted trends in plutonic as well as volcanic rocks which are strikingly similar to those for which LSTD has been proposed, and some have concluded that LSTD was the fractionating mechanism.Several lines of evidence lead us to the conclusion that FC is the dominant differentiating process in high-silica magmas: (1) elemental trends are strikingly consistent with those predicted for FC; it would be a remarkable coincidence if diffusion-induced trends mimicked FC so closely; (2) large phenocryst assemblages in high-silica tuffs indicate low-variance liquid compositions that would be improbable if crystal-liquid equilibria were not controlling differentiation; (3) highly evolved plutonic rocks in many cases do not form the caps expected for LSTD, but rather occur in dikes and pods where they apparently segregated as late liquids; (4) recent experimental studies suggest that trends induced by diffusion differ drastically from observed felsic igneous trends.We do not believe that the principal arguments against FC in high-silica systems (unlikelihood of crystal settling; crystal-poor nature of tuffs) refute the reality of the chemical process, but rather emphasize the need for a better understanding of the physical mechanisms of crystal-liquid fractionation and eruption.  相似文献   

3.
The Pollara tuff-ring resulted from two explosive eruptions whose deposits are separated by a paleosol 13 Ka old. The oldest deposits (LPP, about 0.2 km3) consist of three main fall units (A, B, C) deposited from a subplinian column whose height (7–14 km) increased with time from A to C, as a consequence of the increased magma discharge rate during the eruption (1–8x106 kg/s). A highly variable juvenile population characterizes the eruption. Black, dense, highly porphyritic, mafic ejecta (SiO2=50–55%) almost exclusively form A deposits, whereas grey, mildly vesiculated, mildly porphyritic pumice (SiO2=56–67%) and white, highly vesiculated, nearly aphyric pumice (SiO2=66–71%) predominate in B and C respectively. Mafic cumulates are abundant in A, while crystalline lithic ejecta first appear in B and increase upward. The LPP result from the emptying of an unusual and unstable, compositionally zoned, shallow magma chamber in which high density mafic melts capped low density salic ones. Evidence of the existence of a short crystal fractionation series is found in the mafic rocks; the andesitic pumice results from complete blending between rhyolitic and variously fractionated mafic melts (salic component up to 60 wt%), whereas bulk dacitic compositions mainly result from the presence of mafic xenocrysts within rhyolitic glasses. Viscosity and composition-mixing diagrams show that blended liquids formed when the visosities of the two end members had close values. The following model is suggested: 1. A rhyolitic magma rising through the metamorphic basement enterrd a mafic magma chamber whose souter portions were occupied by a highly viscous, mafic crystal mush. 2. Under the pressure of the rhyolitic body the nearly rigid mush was pushed upwards and mafic melts were squeezed against the walls of the chamber, beginning roof fracturing and mingling with silicic melts. 3. When the equilibrium temperature was reached between mafic and silicic melts, blended liquids rapidly formed. 4. When fractures reached the surface, the eruption began by the ejection of the mafic melts and crystal mush (A), followed by the emission of variously mingled and blended magmas (B) and ended by the ejection of nearly unmixed rhyolitic magma (C).  相似文献   

4.
The giant ignimbrites that erupted from the Cerro Galán caldera complex in the southern Puna of the high Andean plateau are considered to be linked to crustal and mantle melting as a consequence of delamination of gravitationally unstable thickened crust and mantle lithosphere over a steepening subduction zone. Major and trace element analyses of Cerro Galán ignimbrites (68–71% SiO2) that include 75 new analyses can be interpreted as reflecting evolution at three crustal levels. AFC modeling and new fractionation corrected δ18O values from quartz (+7.63–8.85‰) are consistent with the ignimbrite magmas being near 50:50 mixtures of enriched mantle (87Sr/86Sr ~ 0.7055) and crustal melts (87Sr/86Sr near 0.715–0.735). Processes at lower crustal levels are predicated on steep heavy REE patterns (Sm/Yb = 4–7), high Sr contents (>250 ppm) and very low Nb/Ta (9-5) ratios, which are attributed to amphibolite partial melts mixing with fractionating mantle basalts to produce hybrid melts that rise leaving a gravitationally unstable garnet-bearing residue. Processes at mid crustal levels create large negative Eu anomalies (Eu/Eu* = 0.45–0.70) and variable trace element enrichment in a crystallizing mush zone with a temperature near 800–850°C. The mush zone is repeatedly recharged from depth and partially evacuated into upper crustal magma chambers at times of regional contraction. Crystallinity differences in the ignimbrites are attributed to biotite, zoned plagioclase and other antecrysts entering higher level chambers where variable amounts of near-eutectic crystallization occurs at temperatures as low as 680°C just preceding eruption. 40Ar/39Ar single crystal sanidine weighted mean plateau and isochron ages combined with trace element patterns show that the Galán ignimbrite erupted in more than one batch including a ~ 2.13 Ma intracaldera flow and outflows to the west and north at near 2.09 and 2.06 Ma. Episodic delamination of gravitationally unstable lower crust and mantle lithosphere and injection of basaltic magmas, whose changing chemistry reflects their evolution over a steepening subduction zone, could trigger the eruptions of the Cerro Galán ignimbrites.  相似文献   

5.
The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše–Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a “mush model” of magmatic systems.  相似文献   

6.
We investigate the interaction of thermal convection and crystallization in large aspect-ratio magma chambers. Because nucleation requires a finite amount of undercooling, crystallization is not instantaneous. For typical values of the rates of nucleation and crystal growth, the characteristic time-scale of crystallization is about 103–104 s. Roof convection is characterized by the quasi-periodic formation and instability of a cold boundary layer. Its characteristic time-scale depends on viscosity and ranges from about 102 s for basaltic magmas to about 107 s for granitic magmas. Hence, depending on magma viscosity, convective instability occurs at different stages of crystallization. A single non-dimensional number is defined to characterize the different modes of interaction between convection and crystallization.Using realistic functions for the rates of nucleation and crystal growth, we integrate numerically the heat equation until the onset of convective instability. We determine both temperature and crystal content in the thermal boundary layer. Crystallization leads to a dramatic increase of viscosity which acts to stabilize part of the boundary layer against instability. We compute the effective temperature contrast driving thermal convection and show that it varies as a function of magma viscosity and hence composition.In magmas with viscosities higher than 105 poise, the temperature contrast driving convection is very small, hence thermal convection is weak. In low-viscosity magmas, convective breakdown occurs before the completion of crystallization, and involves partially crystallized magma. The convective regime is thus characterized by descending crystal-bearing plumes, and bottom crystallization proceeds both by in-situ nucleation and deposition from the plumes. We suggest that this is the origin of intermittent layering, a form of rhythmic layering described in the Skaergaard and other complexes. We show that this regime occurs in basic magmas only at temperatures close to the liquidus and never occurs in viscous magmas. This may explain why intermittent layering is observed only in a few specific cases.  相似文献   

7.
By applying a number of analytical techniques across a spectrum of spatial scales (centimeter to micrometer) in juvenile components, we show that the Cerro Galán volcanic system has repeatedly erupted magmas with nearly identical geochemistries over >3.5 Myr. The Cerro Galán system produced nine ignimbrites (∼5.6 to 2 Ma) with a cumulative volume of >1,200 km3 (DRE; dense rock equivalent) of calc-alkaline, high-K rhyodacitic magmas (68–71 wt.% SiO2). The mineralogy is broadly constant throughout the eruptive sequence, comprising plagioclase, quartz, biotite, Fe–Ti oxides, apatite, and titanite. Early ignimbrite magmas also contained amphibole, while the final eruption, the most voluminous Cerro Galán ignimbrite (CGI; 2.08 ± 0.02 Ma) erupted a magma containing rare amphibole, but significant sanidine. Each ignimbrite contains two main juvenile clast types; dominant “white” pumice and ubiquitous but subordinate “grey” pumice. Fe–Ti oxide and amphibole-plagioclase thermometry coupled with amphibole barometry suggest that the grey pumice originated from potentially hotter and deeper magmas (800–840°C, 3–5 kbar) than the more voluminous white pumice (770–810°C, 1.5–2.5 kbar). The grey pumice is interpreted to represent the parental magmas to the Galán system emplaced into the upper crust from a deeper storage zone. Most inter-ignimbrite variations can be accounted for by differences in modal mineralogy and crystal contents that vary from 40 to 55 vol.% on a vesicle-free basis. Geochemical modeling shows that subtle bulk-rock variations in Ta, Y, Nb, Dy, and Yb between the Galán ignimbrites can be reconciled with differences in amounts of crystal fractionation from the “grey” parent magma. The amount of fractionation is inversely correlated with volume; the CGI (∼630 km3) and Real Grande Ignimbrite (∼390 km3) return higher F values (proportion of liquid remaining) than the older Toconquis Group ignimbrites (<50 km3), implying less crystal fractionation took place during the upper-crustal evolution of these larger volume magmas. We attribute this relationship to variations in magma chamber geometry; the younger, largest volume ignimbrites came from flat sill-like magma chambers, reducing the relative proportion of sidewall crystallization and fractionation compared to the older, smaller-volume ignimbrite eruptions. The grey pumice clasts also show evidence of silicic recharge throughout the history of the Cerro Galán system, and recharge days prior to eruption has previously been suggested based on reversely zoned (OH and Cl) apatite phenocrysts. A rare population of plagioclase phenocrysts with thin An-rich rims in juvenile clasts in many ignimbrites supports the importance of recharge in the evolution and potential triggering of eruptions. This study extends the notion that large volumes of nearly identical silicic magmas can be generated repeatedly, producing prolonged geochemical homogeneity from a long-lived magma source in a subduction zone volcanic setting. At Cerro Galán, we propose that there is a zone between mantle magma input and upper crustal chambers, where magmas are geochemically “buffered”, producing the underlying geochemical and isotopic signatures. This produces the same parental magmas that are delivered repeatedly to the upper crust. A lower-crustal MASH (melting, assimilation, storage, and homogenization) zone is proposed to act as this buffer zone. Subsequent upper crustal magmatic processes serve only to slightly modify the geochemistry of the magmas.  相似文献   

8.
Large continental silicic magma systems commonly produce voluminous ignimbrites and associated caldera collapse events. Less conspicuous and relatively poorly documented are cases in which silicic magma chambers of similar size to those associated with caldera-forming events produce dominantly effusive eruptions of small-volume rhyolite domes and flows. The Bearhead Rhyolite and associated Peralta Tuff Member in the Jemez volcanic field, New Mexico, represent small-volume eruptions from a large silicic magma system in which no caldera-forming event occurred, and thus may have implications for the genesis and eruption of large volumes of silicic magma and the long-term evolution of continental silicic magma systems.40Ar/39Ar dating reveals that most units mapped as Bearhead Rhyolite and Peralta Tuff (the Main Group) were erupted during an ∼540 ka interval between 7.06 and 6.52 Ma. These rocks define a chemically coherent group of high-silica rhyolites that can be related by simple fractional crystallization models. Preceding the Main Group, minor amounts of unrelated trachydacite and low silica rhyolite were erupted at ∼11–9 and ∼8 Ma, respectively, whereas subsequent to the Main Group minor amounts of unrelated rhyolites were erupted at ∼6.1 and ∼1.5 Ma.The chemical coherency, apparent fractional crystallization-derived geochemical trends, large areal distribution of rhyolite domes (∼200 km2), and presence of a major hydrothermal system support the hypothesis that Main Group magmas were derived from a single, large, shallow magma chamber. The ∼540 ka eruptive interval demands input of heat into the system by replenishment with silicic melts, or basaltic underplating to maintain the Bearhead Rhyolite magma chamber.Although the volatile content of Main Group magmas was within the range of rhyolites from major caldera-forming eruptions such as the Bandelier and Bishop Tuffs, eruptions were smaller volume and dominantly effusive. Bearhead Rhyolite domes occur at the intersection of faults, and are cut by faults, suggesting that the magma chamber was structurally vented preventing volatiles from accumulating to levels high enough to trigger a caldera-forming eruption.  相似文献   

9.
Nisyros island is a calc-alkaline volcano, built up during the last 100 ka. The first cycle of its subaerial history includes the cone-building activity with three phases, each characterized by a similar sequence: (1) effusive and explosive activity fed by basaltic andesitic and andesitic magmas; and (2) effusive andextrusive activity fed by dacitic and rhyolitic magmas. The second eruptive cycle includes the caldera-forming explosive activity with two phases, each consisting of the sequence: (1) rhyolitic phreatomagmatic eruptions triggering a central caldera collapse; and (2) extrusion of dacitic-rhyolitic domes and lava flows. The rocks of this cycle are characteized by the presence of mafic enclaves with different petrographic and chemical features which testify to mixing-mingling processes between variously evolved magmas. Jumps in the degree of evolution are present in the stratigraphic series, accompanied by changes in the porphyritic index. This index ranges from 60% to about 5% and correlates with several teochemical parameters, including a negative correlation with Sr isotope ratios (0.703384–0.705120). The latter increase from basaltic andesites to intermediate rocks, but then slightly decrease in the most evolved volcanic rocks. The petrographic, geochemical and isotopic characteristics can be largely explained by processes occurring in a convecting, crystallizing and assimilating magma chamber, where crystal sorting, retention, resorption and accumulation take place. A group of crystal-rich basaltic andesites with high Sr and compatible element contents and low incompatible elements and Sr isotope ratios probably resulted from the accumulation of plagioclase and pyroxene in an andesitic liquid. Re-entrainment of plagioclase crystals in the crystallizing magma may have been responsible for the lower 87Sr/86Sr in the most evolved rocks. The gaps in the degree of evolution with time are interpreted as due to liquid segregation from a crystal mush once critical crystallinity was reached. At that stage convection halted, and a less dense, less porphyritic, more evolved magma separated from a denser crystal-rich magma portion. The differences in incompatible element enrichment of pre-and post-caldera dacites and the chemical variation in the post-caldera dome sequence are the result of hybridization of post-caldera dome magmas with more mafic magmas, as represented by the enclave compositions. The occurrence of the quenched, more mafic magmas in the two post-caldera units suggests that renewed intrusion of mafic magma took place after each collapse event.  相似文献   

10.
The common occurrence of compositionally and mineralogically zoned ash flow sheets, such as those of the Timber Mountain Group, provides evidence that the source magma bodies were chemically and thermally zoned. The Rainier Mesa and Ammonia Tanks tuffs of the Timber Mountain Group are both large volume (1200 and 900 km3, respectively) chemically zoned (57–78 wt.% SiO2) ash flow sheets. Evidence of distinct magma batches in the Timber Mountain system are based on: (1) major- and trace-element variations of whole pumice fragments; (2) major-element variations in phenocrysts; (3) major-element variations in glass matrix; and (4) emplacement temperatures calculated from Fe-Ti oxides and feldspars. There are three distinct groups of pumice fragments in the Rainier Mesa Tuff: a low-silica group and two high-silica groups (a low-Th and a high-Th group). These groups cannot be related by crystal fractionation. The low-silica portion of the Rainier Mesa Tuff is distinct from the low-silica portion of the overlying Ammonia Tanks Tuff, even though the age difference is less than 200,000 years. Three distinct groups occur in the Ammonia Tanks Tuff: a low-silica, intermediate-silica and a high-silica group. Part of the high-silica group may be due to mixing of the two high-silica Rainier Mesa groups. The intermediate-silica group may be due to mixing of the low- and high-silica Ammonia Tanks groups. Three distinct emplacement temperatures occur in the Rainier Mesa Tuff (869, 804, 723 °C) that correspond to the low-silica, high-Th and low-Th magma batches, respectively. These temperature differences could not have been maintained for any length of time in the magma chamber (cf. Turner, J.S., Campbell, I.H., 1986. Convection and mixing in magma chambers. Earth-Sci. Rev. 23, 255–352; Martin, D., Griffiths, R.W., Campbell, I.H., 1987. Compositional and thermal convection in magma chambers. Contrib. Mineral. Petrol. 96, 465–475) and therefore eruption must have occurred soon after emplacement of the magma batches into the chamber. Emplacement temperatures of the pumice fragments from the Ammonia Tanks Tuff show a continuous gradient of temperatures with composition. This continuous temperature gradient is consistent with the model of storage of magma batches in the Ammonia Tanks group that have undergone both thermal and chemical diffusion.  相似文献   

11.
We propose that the fluid mechanics of magma chamber replenishment leads to a novel process whereby silicic magmas can acquire an important part of their chemical signatures. When flows of basaltic magma enter silicic magma chambers, they assume a ‘fingered' morphology that creates a large surface area of contact between the two magmas. This large surface area provides an opportunity for significant chemical exchange between the magmas by diffusion that is enhanced by continuous flow of silicic liquid traversing the basalt through thin veins. A quantitative analysis shows that a basaltic magma may thereby impart its trace-element and isotopic characteristics to a silicic magma. Depending on concentration differences and diffusion coefficients for the given components, this new mechanism may be as important as crystal fractionation and assimilation in producing the compositional diversity of silicic magmas. It may explain concentration gradients in silicic ash-flow tuffs and should be considered when interpreting the isotopic signatures of silicic rocks, even in the overt absence of mixing. For example, we show that, for several well studied, compositionally graded ash-flow tuffs, the concentrations and isotopic ratios of important geochemical tracers such as strontium could be largely due to this flow-enhanced diffusion process.  相似文献   

12.
Many granitic batholiths occur in the form of com-plexes, presented principally by a temporal-spacial association between two stages of intrusion, in the Nanling region. Compared with main intrusive gran-ites, late intrusive granites are characterized by fine- grained texture, Si- and Al-enriched composition, and small occurrence as stock or apophysis. On the basis of its rock chemistry (e.g., increasing aluminium saturation index) and geochemistry (e.g., Eu depletion, decreasing concentratio…  相似文献   

13.
The relatively low rates of magma production in island arcs and continental extensional settings require that the volume of silicic magma involved in large catastrophic caldera-forming (CCF) eruptions must accumulate over periods of 10 5 to 10 6 years. We address the question of why buoyant and otherwise eruptible high-silica magma should accumulate for long times in shallow chambers rather than erupt more continuously as magma is supplied from greater depths. Our hypothesis is that the viscoelastic behavior of magma chamber wall rocks may prevent an accumulation of overpressure sufficient to generate rhyolite dikes that can propagate to the surface and cause an eruption. The critical overpressure required for eruption is based on the model of Rubin (1995a). An approximate analytical model is used to evaluate the controls on magma overpressure for a continuously or episodically replenished spherical magma chamber contained in wall rocks with a Maxwell viscoelastic rheology. The governing parameters are the long-term magma supply, the magma chamber volume, and the effective viscosity of the wall rocks. The long-term magma supply, a parameter that is not typically incorporated into dike formation models, can be constrained from observations and melt generation models. For effective wall-rock viscosities in the range 10 18 to 10 20 Pa s –1, dynamical regimes are identified that lead to the suppression of dikes capable of propagating to the surface. Frequent small eruptions that relieve magma chamber overpressure are favored when the chamber volume is small relative to the magma supply and when the wall rocks are cool. Magma storage, leading to conditions suitable for a CCF eruption, is favored for larger magma chambers (>10 2 km 3) with warm wall rocks that have a low effective viscosity. Magma storage is further enhanced by regional tectonic extension, high magma crystal contents, and if the effective wall-rock viscosity is lowered by microfracturing, fluid infiltration, or metamorphic reactions. The long-term magma supply rate and chamber volume are important controls on eruption frequency for all magma chamber sizes. The model can explain certain aspects of the frequency, volume, and spatial distribution of small-volume silicic eruptions in caldera systems, and helps account for the large size of granitic plutons, their association with extensional settings and high thermal gradients, and the fact that they usually post-date associated volcanic deposits.  相似文献   

14.
Major and trace element along with representative Sr, Nd and Pb isotope data are presented for drill core samples which intersect an 800 m lava pile in eastern Uruguay. The lavas form part of the Paraná flood basalt province, are low-Ti in composition but distinct from the low-Ti Gramado magma type, and have been termed the Treinte Y Trés magma type. The lava pile overlies a large positive gravity anomaly inferred to reflect an east–west trending, mid-crustal mafic intrusive body with a calculated volume of 35,000 km3. Smooth up-section compositional variations in the basalts are interpreted to record magma evolution within this mid-crustal magma chamber. 87Sr/86Sr and 206Pb/204Pb increase throughout the sequence yet Mg remains relatively constant in the lower 200 m of the sequence, suggesting a role for magma chamber recharge. Above this the lavas show a regular, up-section decrease in Mg coupled with increasing 87Sr/86Sr and 206Pb/204Pb and this is interpreted to reflect crystal fractionation combined with crustal contamination. The data provide further evidence that contamination of flood basalt magmas in crustal magma chambers is a common phenomenon and calculations suggest that the amount of crustal addition may be as high as 60–70%. Nevertheless, the effects of this crustal contamination do not appear able to account for the discrepancy between key incompatible trace element ratios and isotope ratios of the lavas and those of any putative mantle plume. In fact, La/Ta decreases with decreasing Mg and increasing 87Sr/86Sr indicating that the effects of crustal contamination were actually to reduce La/Ta and implying that the parental magmas had very high La/Ta (90). These constraints are clearly inconsistent with an asthenospheric origin for the parental magmas and so, consistent with mass balance calculations, it is inferred that they were derived from the lithospheric mantle.  相似文献   

15.
The Laacher See phonolite tephra sequence (11,000 years B.P.) of the Quaternary East Eifel volcanic field (West Germany) represents an inverted, chemically zoned magma column. Mafic and differentiated phonolites, respectively, represent the lowermost and uppermost erupted portion of the Laacher See magma chamber. Sr and Nd isotopic compositions of whole rocks, matrices and phenocrysts have been analyzed in order to provide constraints for open versus closed system evolution of the Laacher See magma chamber. 87Sr/86Sr isotope ratios of mafic phonolites and their phenocrysts are slightly more radiogenic than parental East Eifel basanite magmas. Bulk rock samples show a drastic increase in 87Sr/86Sr from mafic towards the most differentiated compositions that were erupted from the top of the magma chamber. Glass matrix separates show a parallel, but less pronounced, increase in 87Sr/86Sr. Phenocrysts, in contrast, show a narrow range in 87Sr/86Sr with a slight, but significant, increase towards the top of the magma chamber. Phenocrysts from the uppermost portion of the magma column were not in isotopic (or chemical) equilibrium with their host matrices.143Nd/144Nd isotope ratios for whole rocks, matrices, and phenocrysts fall within a restricted range similar to that of East Eifel mafic magmas. A representative suite of crustal rocks (lower crustal granulites, quartzo-feldspathic gneisses, mica schists, Devonian slates and graywacke) was also analyzed in order to permit an evaluation of possible assimilation models.Our results are consistent with chemical evolution of the zoned Laacher See magma chamber mainly through crystal fractionation accompanied by minor amounts of assimilation. Slight contamination of the magma system may have involved (a) the assimilation of gneisses (?) and mica schists during the initial stage of magma chamber evolution (basanite-mafic phonolite), (b) combined assimilation-fractional crystallization (AFC) concurrent with the second differentiation stage (mafic phonolite-zoned phonolite), and (c) post-crystallization assimilation of the most fractionated volatile-rich melts of the top magma layers during a late, liquid-state (?) differentiation stage. The latter possibly involved fluid transport and/or exchange with the surrounding (partially molten) country rocks. Open system evolution of the Laacher See magma chamber is further indicated by magma mixing, as confirmed by our isotope data, leakage of volatiles from the cupola and metasomatism of wall rocks.  相似文献   

16.
Abstract Whole‐rock chemical and Sr and Nd isotope data are presented for gabbroic and dioritic rocks from a Cretaceous‐Paleogene granitic terrain in Southwest Japan. Age data indicate that they were emplaced in the late Cretaceous during the early stages of a voluminous intermediate‐felsic magmatic episode in Southwest Japan. Although these gabbroic and dioritic rocks have similar major and trace element chemistry, they show regional variations in terms of initial Sr and Nd isotope ratios. Samples from the South Zone have high initial 87Sr/86Sr (0.7063–0.7076) and low initial Nd isotope ratios (?Nd, ?2.5 to ?5.3); whereas those from the North Zone have lower initial 87Sr/86Sr (usually less than 0.7060) and higher Nd isotope ratios (?Nd, ?0.8 to + 3.3). Regional variations in Sr and Nd isotope ratios are similar to those observed in granitic rocks, although gabbroic and dioritic rocks tend to have slightly lower Sr and higher Nd isotope ratios than granitic rocks in the respective zones. Limited variations in Sr and Nd isotope ratios among samples from individual zones may be attributed partly to a combination of upper crustal contamination and heterogeneity of the magma source. Contamination of magmas by upper crustal material cannot, however, explain the observed Sr and Nd isotope variations between samples from the North and South Zones. Between‐zone variations would reflect geochemical difference in magma sources. The gabbroic and dioritic rocks are enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE), showing similar normal‐type mid‐ocean ridge basalt (N‐MORB) normalized patterns to arc magmas. Geochronological and isotopic data may suggest that some gabbroic and dioritic rocks are genetically related to high magnesian andesite. Alternatively, mantle‐derived mafic or intermediate rocks which were underplated beneath the crust may be also plausible sources for gabbroic and dioritic rocks. The magma sources (the mantle wedge and lower crust) were isotopically more enriched beneath the South Zone than the North Zone during the Cretaceous‐Paleogene. Sr and Nd isotope ratios of the lower crustal source of the granitic rocks was isotopically affected by mantle‐derived magmas, resulting in similar initial Sr and Nd isotope ratios for gabbroic, dioritic and granitic rocks in each zone.  相似文献   

17.
Based on detailed field, petrographic, chemical, and isotopic data, this paper shows that the youngest magmas of the active Nisyros volcano (South Aegean Arc, Greece) are an example of transition from rhyolitic to less evolved magmas by multiple refilling with mafic melts, triggering complex magma interaction processes. The final magmatic activity of Nisyros was characterized by sub-Plinian caldera-forming eruption (40?ka), emplacing the Upper Pumice (UP) rhyolitic deposits, followed by the extrusion of rhyodacitic post-caldera domes (about 31–10?ka). The latter are rich in magmatic enclaves with textural and compositional (basaltic–andesite to andesite) characteristics that reveal they are quenched portions of mafic magmas included in a cooler more evolved melt. Dome-lavas have different chemical, isotopic, and mineralogical characteristics from the enclaves. The latter have lower 87Sr/86Sr and higher 143Nd/144Nd values than dome-lavas. Silica contents and 87Sr/86Sr values decrease with time among dome-lavas and enclaves. Micro-scale mingling processes caused by enclave crumbling and by widespread mineral exchanges increase from the oldest to the youngest domes, together with enclave content. We demonstrate that the dome-lavas are multi-component magmas formed by progressive mingling/mixing processes between a rhyolitic component (post-UP) and the enclave-forming mafic magmas refilling the felsic reservoir (from 15?wt.% to 40?wt.% of mafic component with time). We recognize that only the more evolved enclave magmas contribute to this process, in which recycling of cumulate plagioclase crystals is also involved. The post-UP end-member derives by fractional crystallization from the magmas leftover after the previous UP eruptions. The enclave magma differentiation develops mainly by fractional crystallization associated with multiple mixing with mafic melts changing their composition with time. A time-related picture of the relationships between dome-lavas and relative enclaves is proposed, suggesting a delay between a mafic magma input and the relative dome outpouring. We also infer that the magma viscosity reduction by re-heating allows dome extrusion without explosive activity.  相似文献   

18.
Abstract The Hakkoda‐Towada caldera cluster (HTCC) is a typical Late Cenozoic caldera cluster located in the northern part of the Northeast Japan Arc. The HTCC consists of five caldera volcanoes, active between 3.5 Ma and present time. The felsic magmas can be classified into high‐K (HK‐) type and medium‐ to low‐K (MLK‐) type based on their whole‐rock chemistry. The HK‐type magmas are characterized by higher K2O and Rb contents and higher 87Sr/86Sr ratios than MLK‐type magmas. Both magmas cannot be derived from fractional crystallization of any basaltic magma in the HTCC. Assimilation‐fractional crystallization model calculations show that crustal assimilation is necessary for producing the felsic magmas, and HK‐type magmas are produced by higher degree of crustal assimilation with fractional crystallization than MLK‐type magmas. Although MLK‐type magmas were erupted throughout HTCC activity, HK‐type magmas were erupted only during the initial stage. The temporal variations of magma types suggest the large contribution of crustal components in the initial stage. A major volcanic hiatus of 3 my before the HTCC activity suggests a relatively cold crust in the initial stage. The cold crust probably promoted crustal assimilation and fractional crystallization, and caused the initial generation of HK‐type magmas. Subsequently, the repeated supply of mantle‐derived magmas raised temperature in the crust and formed relatively stable magma pathways. Such a later system produced MLK‐type magmas with lesser crustal components. The MLK‐type magmas are common and HK‐type magmas are exceptional during the Pliocene–Quaternary volcanism in the Northeast Japan Arc. This fact suggests that exceptional conditions are necessary for the production of HK‐type magmas. A relatively cold crust caused by a long volcanic hiatus (several million years) is considered as one of the probable conditions. Intensive crustal assimilation and fractional crystallization promoted by the cold crust may be necessary for the generation of highly evolved HK‐type felsic magmas.  相似文献   

19.
The Sintra igneous complex, Portugal was an important centre of activity in late Cretaceous times. The great proportion of thealkaline rocks are felsic and include five large quartz syenite intrusions and trachyandesite, trachyte and alkali rhyolite lavas and dykes, most of which are oversaturated. Mafic rocks are sparse, but vary widely from alkaline and highly undersaturated types containing high K2O, TiO2 and Ba, similar to the contemporaneous Lisbon lavas, to hypersthene normative trachybasalts and one hypersthene normative basalt. The various magma types are intimately associated and a well-developed netveined complex of alkali gabbro, monzonite and syenite is recognised at Cabo da Roca. A study of the dyke distributions, intersections and orientations suggest a close propinquity of both oversaturated and undersaturated and of both felsic and matic magmas. The basic magmas of Sintra and Lisbon show a continuous range in undersaturation (0 to 16% normative nepheline) and rare hypersthene normative basalts. Derivation of the hypersthene normative and mildly undersaturated basalts from the more undersaturated melts by low pressure fractionation or contamination by siliceous crust is shown to be unlikely. High pressure eclogite fractionation of a hypersthene normative basalt or variations in the percentage partial melting of a mantle under conditions where titanphlogopite is a low melting fraction are both processes compatible with the variations in undersaturation and proportions of TiO2, K2O and Ba. The quartz syenites and over satured felsic lavas of Sintra are thought to be derived from hypersthene nor mative parents.  相似文献   

20.
We proposed a geological and petrologic model for the generation of the Belogolovskii Late Pliocene to Early Pleistocene volcanic massif. We identified two petrochemical series of rocks with varying alkalinities, viz., normal and moderate. The evolution of volcanic products and the mineralogic composition of rocks of varying alkalinities provide evidence that the sources of parent magmas are spatially independent and reside at different depths. Crystallization differentiation is the leading process that is responsible for the generation of the initial melts that give rise to the range of rocks within a series. The evolution of the alkaline basaltic magma occurred stepwise, producing autonomous daughter melts with the following compositions: trachybasalt-trachyandesite-trachyte-trachyrhyolite and comendite. These melts were localized in inter-mediate magma chambers at different depths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号