首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty stations were established in the near-shore regions of South Fujian Shoal (116°10′–119°00 E, 21°20′–24°10′ N) on summer and winter cruises during the period from August 1997 and February to March 1998. The distribution pattern of marine bacterial β-glucosidase activity (β-GlcA) has been investigated by using fluorogenic model substrate (FMS) technique in order to have better understanding of the β-GlcA, as well as its relation to marine bacterial biomass, productivity and environmental factors in Taiwan strait. The results showed that: (1) In summer, the average of β-GlcA at the Southern stations of Taiwan strait was 1.94 nmol/1 h. While in winter, the average of β-GlcA at the Northern stations was 0.86 nmol/1 h and the range of variation (0.34–1.89 nmol/1 h) was much more narrow than that in summer (0.31–8.1 nmol/1 h). (2) According to the carbon conversion factor, the β-GlcA was 0.14 and 0.062 ugc/1 h in summer and winter respectively. These β-GlcA values were higher than the bacterial production of the two seasons respectively. (3) The β-GlcA gradually rises from offshore water to near-shore water. (4) The correlation between the β-GlcA and the bacterial secondary production was not so obvious. (5) The correlation between the section distributions, daily varying of the β-GlcA and the bacterial production was not obvious. (6) In the surface water, the distribution character of free-state β-GlcA from bacteria was equal to that of the total β-GlcA in the whole sea area.  相似文献   

2.
The viscosity of synthetic peridotite liquid has been investigated at high pressures using in-situ falling sphere viscometry by combining a multi-anvil technique with synchrotron radiation. We used a newly designed capsule containing a small recessed reservoir outside of the hot spot of the heater, in which a viscosity marker sphere is embedded in a forsterite + enstatite mixture having a higher solidus temperature than the peridotite. This experimental setup prevents spheres from falling before a stable temperature above the liquidus is established and thus avoids difficulties in evaluating viscosities from velocities of spheres falling through a partially molten sample.

Experiments have been performed between 2.8 and 13 GPa at temperatures ranging from 2043 to 2523 K. Measured viscosities range from 0.019 (± 0.004) to 0.13 (± 0.02) Pa s. At constant temperature, viscosity increases with increasing pressure up to  8.5 GPa but then decreases between  8.5 and 13 GPa. The change in the pressure dependence of viscosity is likely associated with structural changes of the liquid that occur upon compression. By combining our results with recently published 0.1 MPa peridotite liquid viscosities [D.B. Dingwell, C. Courtial, D. Giordano, A. Nichols, Viscosity of peridotite liquid, Earth Planet. Sci. Lett. 226 (2004) 127–138.], the experimental data can be described by a non-Arrhenian, empirical Vogel-Fulcher-Tamman equation, which has been modified by adding a term to account for the observed pressure dependence of viscosity. This equation reproduces measured viscosities to within 0.08 log10-units on average. We use this model to calculate viscosities of a peridotitic magma ocean along a liquid adiabat to a depth of  400 km and discuss possible effects on viscosity at greater pressures and temperatures than experimentally investigated.  相似文献   


3.
We report new metal-silicate partition coefficients for Ni, Co and P at 7.0 GPa (1650–1750°C), and Ni, Co, Mo, W and P at 0.8, 1.0 and 1.5 GPa (1300–1400°C). Guided by thermodynamics, all available metal-silicate partition coefficients, D(i), where i is Ni, Co, P, Mo and W, are regressed against 1/T, P/T, lnf(O2), ln(1 − Xs) (XS is mole fraction of S in metallic liquid) and nbo/t (non-bridging oxygen/tetrahedral cation ratio, a silicate melt compositional-structural parameter) to derive equations of the following form: ln D(i) = aln f(O2) + (b/T) + (cP/T) + d(nbo/t) + eln(1 − XS) + f. Expressions for solid metal-liquid silicate and liquid metal-liquid silicate partition coefficients are derived for S-free and S-bearing systems.

We investigate whether Earth's upper-mantle siderophile element abundances can be reconciled with simple metal-silicate equilibrium. Sulfur-free metallic compositions do not allow a good fit. However, Ni, Co, Mo, W and P abundances in the upper mantle are consistent with simple metal-silicate equilibrium at mantle pressures and temperatures (27 GPa, 2200 K, ΔIW(iron-wüstite) = −0.15, nbo/t = 2.7; XS = 0.15). Although these conditions are near the anhydrous peridotite solidus, they are well above the hydrous solidus and probably closer to the liquidus. A hydrous magma ocean and early mantle are consistent with predicted planetary accretion models. These results suggest that siderophile element abundances in Earth's upper mantle were established by liquid metal-liquid silicate equilibrium near the upper-mantle-lower-mantle boundary.  相似文献   


4.
The wetting characteristics of liquid Fe–Si alloys in a matrix of the respective predominating stable silicate mantle mineral (forsterite or silicate perovskite) at pressures of 2–5 and 25 GPa and temperatures of 1600–2000 °C were studied by determining the liquid metal–solid silicate contact angles. The median angle values from texturally equilibrated samples were found to be independent of pressure, temperature, silicate mineralogy and the Si content in the metal fraction and range between 130° and 140° which is far above the critical wetting boundary of 60°. This shows that within the studied range of conditions dissolved Si does not lower the surface energies between Fe-rich liquids and silicate mantle grains. As a consequence, under reducing conditions the presence of Si in the metal phase of planetary bodies would not have enhanced percolative flow as an effective metal–silicate separation process.  相似文献   

5.
In situ X-ray diffraction measurements on a calcium aluminosilicate (CAS) phase have been carried out using a laser-heated diamond anvil cell up to a pressure of 44 GPa, employing a synchrotron radiation source. CAS is the major mineral formed from sediments subducted into the Earth's mantle. The sample was heated using a YAG laser after each pressure increment to relax the deviatoric stress in the sample. X-ray diffraction measurements were carried out at T = 300 K using an angle-dispersive technique. The pressure was calculated using an internal platinum metal pressure calibrant. The Birch–Murnaghan equation of state for the CAS phase obtained from the experimental unit cell parameters showed a density of ρ0 = 3.888 g/cm3 and a bulk modulus of K0 = 229 ± 9 GPa for K0 = 4.7 ± 0.7. When the first pressure derivative of the bulk modulus was fixed at K0 = 4, then the value of K0 = 239 ± 2 GPa. From the experimental compressibility, the density of the CAS phase was observed to be lower than the density of co-existing Al-bearing stishovite, calcium perovskite, calcium ferrite-type phases, and (Fe,Al)-bearing Mg-perovskite in subducted sediments in the lower mantle. Therefore, the density of subducted sediments in the lower mantle decreases with increasing mineral proportion of the CAS phase.  相似文献   

6.
Pressure–volume measurements have been performed for CaSiO3 perovskite to 108 GPa at 300 K using NaCl and argon pressure-transmitting media, and energy dispersive X-ray diffraction (EDXD) in a diamond-anvil cell (DAC). By determining a parameter that is the product of the elastic anisotropy, S, and the uniaxial stress component, t, for each data point, we define the stress condition of the sample. For different points at the same pressure in a temperature-quenched sample, the St value can differ by as much as a factor of 5, indicating heterogeneity in the stress condition. This may be responsible for the large scatter of earlier PV measurements in the DAC which in general used a large diameter X-ray beam. Also, the St value provides insight into the elastic anisotropy, S, of CaSiO3 perovskite and platinum. The sign of S (positive) for CaSiO3 perovskite agrees with first principles calculations but the magnitude may be inconsistent. A new compression curve at 300 K was obtained for CaSiO3 perovskite by using those data points which represent the most nearly hydrostatic conditions. It is observed that the data points with high St values yield larger volumes than the points with small St values at a given pressure. By selecting the data points having low St values (St≤0.005), combining with lower pressure large volume press (LVP) measurements and fitting to third order Birch–Murnaghan equation of state (EOS), we find that CaSiO3 perovskite is more compressible (V0=45.58±0.05 Å3, KT0=236±4 GPa, and KT0′=3.9±0.2 GPa) than suggested by previous studies. The density and bulk modulus of CaSiO3 perovskite at lower mantle pressures and 300 K are 1–3% greater and 5–15% smaller, respectively, than found in previous studies. This study demonstrates that defining the stress state of the sample is crucial to obtain an accurate 300 K compression curve for unquenchable high-pressure phases.  相似文献   

7.
Oxygen isotope ratios were obtained from authigenic clinoptilolites from Barbados Accretionary Complex, Yamato Basin, and Exmouth Plateau sediments (ODP Sites 672, 797, and 762) in order to investigate the isotopic fractionation between clinoptilolite and pore water at early diagenetic stages and low temperatures. Dehydrated clinoptilolites display isotopic ratios for the zeolite framework (δ18Of) that extend from +18.7‰ to +32.8‰ (vs. SMOW). In combination with associated pore water isotope data, the oxygen isotopic fractionation between clinoptilolite and pore fluids could be assessed in the temperature range from 25°C to 40°C. The resulting fractionation factors of 1.032 at 25°C and 1.027 at 40°C are in good agreement with the theoretically determined oxygen isotope fractionation between clinoptilolite and water. Calculations of isotopic temperatures illustrate that clinoptilolite formation occurred at relatively low temperatures of 17°C to 29°C in Barbados Ridge sediments and at 33°C to 62°C in the Yamato Basin. These data support a low-temperature origin of clinoptilolite and contradict the assumption that elevated temperatures are the main controlling factor for authigenic clinoptilolite formation. Increasing clinoptilolite δ18Of values with depth indicate that clinoptilolites which are now in the deeper parts of the zeolite-bearing intervals had either formed at lower temperatures (17–20°C) or under closed system conditions.  相似文献   

8.
A phase transition in pure CaSiO3 perovskite was investigated at 27 to 72 GPa and 300 to 819 K by in-situ X-ray diffraction experiments in an externally-heated diamond-anvil cell. The results show that CaSiO3 perovskite takes a tetragonal form at 300 K and undergoes phase transition to a cubic structure above 490–580 K in a pressure range studied here. The transition boundary is strongly temperature-dependent with a slightly positive dT / dP slope of 1.1 (± 1.3) K/GPa. It is known that the transition temperature depends on Al2O3 content dissolved in CaSiO3 perovskite [Kurashina et al., Phys. Earth Planet. Inter. 145 (2004) 67–74]. The phase transition in CaSiO3(+ 3 wt.% Al2O3) perovskite therefore could occur in a cold subducted mid-oceanic ridge basalt (MORB) crust at about 1200 K in the upper- to mid-lower mantle. This phase transition is possibly ferroelastic-type and may cause large seismic anomalies in a wide depth range.  相似文献   

9.
Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys   总被引:3,自引:0,他引:3  
Many of the heaviest and lightest natural zinc (Zn) isotope ratios have been discovered in hydrothermal ore deposits. However, the processes responsible for fractionating Zn isotopes in hydrothermal systems are poorly understood. In order to better assess the total range of Zn isotopes in hydrothermal systems and to understand the factors which are responsible for this isotopic fractionation, we have measured Zn isotopes in seafloor hydrothermal fluids from numerous vents at 9–10°N and 21°N on the East Pacific Rise (EPR), the TAG hydrothermal field on the Mid-Atlantic Ridge, and in the Guaymas Basin. Fluid δ66Zn values measured at these sites range from + 0.00‰ to + 1.04‰. Of the many physical and chemical parameters examined, only temperature was found to correlate with fluid δ66Zn values. Lower temperature fluids (< 250 °C) had both heavier and more variable δ66Zn values compared to higher temperature fluids from the same hydrothermal fields. We suggest that subsurface cooling of hydrothermal fluids leads to precipitation of isotopically light sphalerite (Zn sulfide), and that this process is a primary cause of Zn isotope variation in hydrothermal fluids. Thermodynamic calculations carried out to determine saturation state of sphalerite in the vent fluids support this hypothesis with isotopically heaviest Zn found in fluids that were calculated to be saturated with respect to sphalerite. We have also measured Zn isotopes in chimney sulfides recovered from a high-temperature (383 °C) and a low-temperature (203 °C) vent at 9–10°N on the EPR and, in both cases, found that the δ66Zn of chimney minerals was lighter or similar to the fluid δ66Zn. The first measurements of Zn isotopes in hydrothermal fluids have revealed large variations in hydrothermal fluid δ66Zn, and suggest that subsurface Zn sulfide precipitation is a primary factor in causing variations in fluid δ66Zn. By understanding how chemical processes that occur beneath the seafloor affect hydrothermal fluid δ66Zn, Zn isotopes may be used as a tracer for studying hydrothermal processes.  相似文献   

10.
The effects of salinity, temperature, and light conditions on the reproduction and development of harpacticoid copepod, Nitocra affinis f. californica under controlled laboratory conditions were determined. Seven different salinity levels (5, 10, 15, 20, 25, 30, 35 ppt), four temperatures (20, 25, 30, 35 °C), three different light intensities (25, 56, 130 μmol m−2 s−1) and photoperiods (24 h:0 h, 1 h:23 h, 12 h:12 h LD cycle) were employed in this study. The highest (p < 0.05) overall reproduction and fastest development time were achieved by copepods reared under 30–35 ppt salinity. The optimum temperature required for the maximum reproduction was 30 °C while under 30 °C and 35 °C the copepod development time was shortest (p < 0.05) compared to other temperature levels. The overall reproduction was highest (p < 0.05) and development rate of N. affinis was shortest (p < 0.05) under lowest light intensity (25 μmol m−2 s−1). Continuous light (24 h:0 h LD) inhibited the egg production while, continuous darkness (1 h:23 h LD) and 12 h:12 h LD significantly favoured the overall reproductive activity of the female. Photoperiods 1 h:23 h and 12 h:12 h LD yielded highest total (p < 0.05) offspring female−1 coupled with highest (p < 0.05) survival percentage. This study illustrated that although N. affinis can tolerate wide range of environmental conditions, prolonged exposure to subnormal environments affect its reproduction and development. This study showed that this species can be mass cultured for commercial purposes and has a potential to be used for toxicity studies due to its high reproductive performance fast development and a wide range of tolerance to environmental conditions.  相似文献   

11.
The melting curve of forsterite has been studied by static experiment up to a pressure of 15 GPa. Forsterite melts congruently at least up to 12.7 GPa. The congruent melting temperature is expressed by the Kraut-Kennedy equation in the following form: Tm(K)=2163 (1+3.0(V0 ? V)/V0), where the volume change with pressure was calculated by the Birch-Managhan equation of state with the isothermal bulk modulus K0 = 125.4 GPa and its pressure derivative K′ = 5.33. The triple point of forsterite-β-Mg2SiO4-liquid will be located at about 2600°C and 20 GPa, assuming that congruent melting persists up to the limit of the stability field of forsterite. The extrapolation of the previous melting data on enstatite and periclase indicates that the eutectic composition of the forsterite-enstatite system should shift toward the forsterite component with increasing pressure, and there is a possibility of incongruent melting of forsterite into periclase and liquid at higher pressure, although no evidence on incongruent melting has been obtained in the present experiment.  相似文献   

12.
Laboratory culturing experiments with living Globigerina bulloides indicate that Mg/Ca is primarily a function of seawater temperature and suggest that Mg/Ca of fossil specimens is an effective paleotemperature proxy. Using culturing results and a core-top Neogloboquadrina pachyderma calibration, we have estimated glacial–interglacial changes in sea surface temperature (SST) using planktonic Mg/Ca records from core RC11-120 in the Subantarctic Indian Ocean (43°S, 80°E) and core E11-2 in the Subantarctic Pacific Ocean (56°S, 115°W). Our results suggest that glacial SST was about 4°C cooler in the Subantarctic Indian Ocean and 2.5°C cooler in the Subantarctic Pacific. Comparison of SST and planktonic δ18O records indicates that changes in SST lead changes in δ18O by on average 1–3 kyr. The glacial–interglacial temperature change indicated by the Subantarctic Mg/Ca records suggests that temperature accounts for 40–60% of the foraminiferal δ18O change. We have used the Mg/Ca-based SST estimates and δ18O determinations to generate site-specific seawater δ18O records, which suggest that seawater δ18O was on average 1‰ more positive during glacial episodes compared with interglacial episodes.  相似文献   

13.
Four species of marine calcifying algae, the coccolithophores Calcidiscus leptoporus, Helicosphaera carteri, Syracosphaera pulchra and Umbilicosphaera foliosa were grown in laboratory cultures under temperatures varying between 14 and 23 °C, and one species, C. leptoporus, under varying [CO32−], ranging from 105 to 219 μmol/kg. Calcium isotope compositions of the coccoliths resemble in both absolute fractionation and temperature sensitivity previous calibrations of marine calcifying species e.g. Emiliania huxleyi (coccolithophores) and Orbulina universa (planktonic foraminifera) as well as inorganically precipitated CaCO3, but also reveal small species specific differences. In contrast to inorganically precipitated calcite, but similar to E. huxleyi and O. universa, the carbonate ion concentration of the medium has no statistically significant influence on the Ca isotope fractionation of C. leptoporus coccoliths; however, combined data of E. huxleyi and C. leptoporus indicate that the observed trends might be related to changes of the calcite saturation state of the medium. Since coccoliths constitute a significant portion of the global oceanic CaCO3 export production, the Ca isotope fractionation in these biogenic structures is important for defining the isotopic composition of the Ca sink of the ocean, one of the key parameters for modelling changes to the marine Ca budget over time. For the present ocean our results are in general agreement with the previously postulated and applied mean value of the oceanic Ca sink (Δsed) of about − 1.3‰, but the observed inter- and intra-species differences point to possible changes in Δsed through earth history, due to changing physico-chemical conditions of the ocean and shifts in floral and faunal assemblages.  相似文献   

14.
Benthic foraminiferal magnesium/calcium ratios were determined on one hundred and forty core-top samples from the Atlantic Ocean, the Norwegian Sea, the Indian Ocean, the Arabian Sea and the Pacific Ocean, mostly at sites with bottom water temperatures below 5 °C. Mg/Ca ratios are consistently lower, by  0.2 mmol/mol, in samples cleaned using oxidative and reductive steps than using oxidative cleaning. Differences between Cibicidoides species have been identified: Mg/Ca of Cibicidoides robertsonianus > Cibicidoides kullenbergi > Cibicidoides wuellerstorfi. Comparison with bottom water temperatures support observations of lowered Mg/Ca of C. wuellerstorfi at temperature below  3 °C compared with values predicted by published calibrations and from other Cibicidoides species. Hydrographic data shows that carbonate ion saturation (Δ[CO32−]) decreases rapidly below this temperature. An empirical sensitivity of Δ[CO32−] on Mg/Ca has been established for C. wuellerstorfi of 0.0086 ± 0.0006 mmol/mol/μmol/kg. A novel application using modern temperatures and Last Glacial Maximum temperatures derived via pore fluid modelling supports a carbonate ion saturation state effect on Mg incorporation. This may significantly affect calculated δ18Oseawater obtained from foraminiferal δ18O and Mg/Ca temperature.  相似文献   

15.
Primitive basaltic single eruptions in the Big Pine Volcanic Field (BPVF) of Owens Valley, California show systematic temporal–compositional variation that cannot be described by simple models of fractional crystallization, partial melting of a single source, or crustal contamination. We targeted five monogenetic eruption sequences in the BPVF for detailed chemical and isotopic measurements and 40Ar/39Ar dating, focusing primarily on the Papoose Canyon sequence. The vent of the primitive (Mg# = 69) Papoose Canyon sequence (760.8 ± 22.8 ka) produced magmas with systematically decreasing (up to a factor of two) incompatible element concentrations, at roughly constant MgO (9.8 ± 0.3 (1σ) wt.%) and Na2O. SiO2 and compatible elements (Cr and Ni) show systematic increases, while 87Sr/86Sr systematically decreases (0.7063–0.7055) and εNd increases (− 3.4 to − 1.1). 187Os/188Os is highly radiogenic (0.20–0.31), but variations among four samples do not correlate with other chemical or isotopic indices, are not systematic with respect to eruption order, and thus the Os system appears to be decoupled from the dominant trends. The single eruption trends likely result from coupled melting and mixing of two isotopically distinct sources, either through melt-rock interaction or melting of a lithologically heterogeneous source. The other four sequences, Jalopy Cone (469.4 ± 9.2 ka), Quarry Cone (90.5 ±17.6 ka), Volcanic Bomb Cone (61.6 ± 23.4 ka), and Goodale Bee Cone (31.8 ± 12.1 ka) show similar systematic temporal decreases in incompatible elements. Monogenetic volcanic fields are often used to decipher tectonic changes on the order of 105–106 yr through long-term changes in lava chemistry. However, the systematic variation found in Papoose Canyon (100–102 yr) nearly spans that of the entire volcanic field, and straddles cutoffs for models of changing tectonic regime over much longer time-scales. Moreover, ten new 40Ar/39Ar ages combined with chemistry from all BPVF single eruption sequences show the long-term trend of BPVF evolution comprises the overlapping, temporal–compositional trends of the monogenetic vents. This suggests that the single eruption sequences contain the bulk of the systematic chemical variation, whereas their aggregate compositions define the long-term trend of volcanic field evolution.  相似文献   

16.
High-precision in-situ ion microprobe (SIMS) oxygen isotope analysis of zircons from two diorite intrusions associated with the late Caledonian Lochnagar pluton in Scotland has revealed large differences in the degree of heterogeneity in zircon δ18O between the diorites. Zircon crystals from the Cul nan Gad diorite (CnG) show a unimodal distribution of oxygen isotope values (δ18O = 6.0 ± 0.6‰ (2σ)) and no or only minor grain-scale variation. Those from the Allt Darrarie diorite (AD1) show a large range in δ18O and an apparent bimodal distribution with modes of 6.6 ± 0.4‰ and 7.3 ± 0.4‰. Variations of up to 1.2‰ occur between and within grains; both an increase and decrease in δ18O with zircon growth has been observed. The δ18O composition of growing zircon can only change if open-system processes affect the magma composition, i.e. if material of contrasting δ18O composition is added to the magma. The variability in AD1 is interpreted to represent a cryptic record of magma mixing. A ‘deep crustal hot zone’ is a likely site for generation of the dioritic magmas which developed by mixing of residual melts and crustal partial melts or by melting of mafic lower crustal rocks. The overall small number of zircons with mantle-like δ18O values (5.3 ± 0.6‰ (2σ)) in the Lochnagar diorites is largely the product of crustal differentiation rather than crustal growth.

The δ18O of quartz from the CnG and AD1 diorites shows only minor variation (CnG: 10.9 ± 0.5‰ (2σ), AD1: 11.7 ± 0.6‰ (2σ)) within single populations, with no evidence of mixing. Quartz–zircon isotopic disequilibrium is consistent with later crystallisation of quartz from late magmatic fluids, and in case of the AD1 diorite after the inferred magma mixing from a homogenised, higher δ18O melt.

High-precision SIMS oxygen isotope analysis of zircon provides a new approach to identifying and resolving previously undetected early-stage magma mixing and constraining the compositions and origins of the component magmas. A combination of zircon, quartz and whole-rock data has proven to be a powerful tool in reconstructing the petrogenetic evolution of diorite from early crystallisation to late alteration.  相似文献   


17.
The timing of ultra-high pressure (UHP) metamorphism has been difficult to determine because of a lack of age constraints on crucial events, especially those occurring on the prograde path. New Sensitive High-Resolution Ion Microprobe (SHRIMP) U–Pb age and rare-earth element (REE) data of zircon are presented for UHP metamorphic rocks (eclogite, garnet peridotite, garnet pyroxenite, jadeite quartzite and garnet gneiss) along the Dabie–Sulu UHP complex of China. With multiphase metamorphic textures and index mineral inclusions within zircon, the Dabie data define three episodes of eclogite-facies metamorphism, best estimated at 242.1 ± 0.4 Ma, 227.2 ± 0.8 Ma and 219.8 ± 0.8 Ma. Eclogite-facies zircons of the Sulu UHP complex grew during two major episodes at 242.7 ± 1.2 and 227.5 ± 1.3 Ma, which are indistinguishable from corresponding events in the Dabie UHP complex. A pre-eclogite metamorphic phase at 244.0 ± 2.6 Ma was obtained from two Sulu zircon samples which contain low pressure–temperature (plagioclase, stable below the quartz/Ab transformation) and hydrous (e.g., amphibole, stable below  2.5 Gpa) mineral inclusions. In terms of Fe–Mg exchange of trapped garnet–clinopyroxene pairs within zircon domains, we are able to determine the Pressure–Temperature (PT) conditions for a specific episode of metamorphic zircon growth. We suggest that mineral phase transformations and associated dehydration led to episodic eclogite-facies zircon growth during UHP metamorphism ( 2.7 Gpa) began at 242.2 ± 0.4 Ma (n = 74, pooling the Dabie–Sulu data), followed by peak UHP metamorphism (>  4 Gpa) at 227.3 ± 0.7 Ma (n = 72), before exhumation (<  220 Ma) to quartz stability (~ 1.8 Gpa). The Dabie–Sulu UHP metamorphism lasted for about 15 Ma, equivalent to a minimum subduction rate of 6 mm/year for the descending continental crust.  相似文献   

18.
Granoblastic olivine aggregates (GOA) have been discovered in some Type I magnesian chondrules within carbonaceous chondrites by Libourel and Krot [Libourel, G., Krot, A.N., 2007. Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth Planet. Sci. Lett. 254, 1–8], who proposed an origin from pre-existing planetesimals. Amoeboid olivine aggregates (AOA), generally considered as aggregates of solar nebula condensates and found within similar carbonaceous chondrites, display similar equilibrium texture, though on a finer scale. For these reasons, we conducted experiments to determine if annealing of olivine required time scales appropriate to planetesimal or nebular heating. Pressed < 43 µm and < 63 µm San Carlos olivine powder (Fo88.4) was isothermally heated at temperatures ranging from 1350–1550 °C for 1–100 h. The 100 h runs yield olivine aggregates with well-developed granoblastic texture at all temperatures, manifest as a network of randomly-oriented and sutured olivine grains with 120° triple junctions. Individual olivine grains are 4–6 sided and polygonal by 1450 °C and equigranular texture is developed at high temperature (1500–1550 °C). Melting of olivine commences at 1450–1500 °C and aids in ‘ripening’ and suturing (grain coarsening and grain boundary migration). Textural equilibrium is clearly met at 1550 °C. A planetesimal origin cannot be ruled out; however, the experimental evidence reveals that granoblastic texture can be reproduced in an interval not inconsistent with heating times for nebular objects. GOA may have experienced higher degrees of thermal processing than the finer-grained AOA. If the precursors were the same, grain coarsening would have to be accompanied by modification to bulk and isotopic compositions. However, the precursors could have been olivine condensates formed later than AOA. Annealing may have been a widespread process operating in the primordial solar nebula responsible for thermal processing and formation of GOA prior to their incorporation into chondrules.  相似文献   

19.
Experiments on MgSiO3 enstatite were conducted in the pressure range from 13 to 18 GPa under hydrous conditions in order to clarify the effect of water on the melting phase relations of enstatite at pressures corresponding to the Earth’s mantle transition zone. In some previous experiments [Geol. Soc. Am. Bull. 79 (1968) 1685; Phys. Earth Planet. Inter. 85 (1994) 237], incongruent melting behavior to form Mg2SiO4 forsterite and SiO2 enriched liquid up to 5 GPa was observed, and congruent melting behavior at pressures up to 12 GPa was observed. Under hydrous conditions, we found that the melting reaction changes from congruent to incongruent at around 13.5 GPa. Liquid formed above 13.5 GPa is enriched in MgO component relative to MgSiO3 because it coexists with stishovite (SiO2). Moreover, the solidus temperature decreases drastically at around 13.5 GPa, in unison with the change in the melting reaction. The solidus temperature is about 1400 °C at 13 GPa, but approximately 900 °C at 15 GPa. Our results show that the liquidus phase changes from clinoenstatite to stishovite with increasing pressure and water content above 13.5 GPa. MgSiO3 enstatite is one of the major constituent minerals in the Earth’s mantle, and it is expected that MgO-enriched liquid will be generated in the transition zone if water is present.  相似文献   

20.
We have investigated the phase relations of iron and iron–nickel alloys with 18 to 50 wt.% Ni up to over 300 GPa using a laser-heated diamond-anvil cell. The synchrotron X-ray diffraction measurements show the wide stability of hcp-iron up to 301 GPa and 2000 K and 319 GPa and 300 K without phase transition to dhcp, orthorhombic, or bcc phases. On the other hand, the incorporation of nickel has a remarkable effect on expanding the stability field of fcc phase. The geometry of the temperature–composition phase diagram of iron–nickel alloys suggests that the hcp–fcc–liquid triple point is located at 10 to 20 wt.% Ni at the pressure of the inner core boundary. The fcc phase could crystallize depending on the nickel and silicon contents in the Earth's core, both of which are fcc stabilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号