首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results from interpretation of the aerophotos and in-situ seismogeological researches show that there are some obvious late-Quaternary activities along the Moxi-Mianning segment of the Xianshuihe-Anninghe fault zone, with the characteristics of sinistral-slip movement accompanied by some significant vertical slip components. Since late-Quaternary, the average horizontal slip rate of the segment at the south of Moxi along the Xianshuihe fault is 6.0~9.9mm/a and 4.7~5.3mm/a along the segment at the north of Mianning of the Anninghe fault. The results from the investigation of coseismic dislocation and ground rupture show that the ground rupture caused by 1876 Kangding-Luding earthquake with M 7 3/ 4 can extend to the south of Tianwan. The segment at the north of Mianning of the Anninghe fault has a background for producing M7.5 earthquake and the geological record of the last strong earthquake must be the proofs of the 1327 earthquake with M>6.0 with poor historical records.  相似文献   

2.
INTRODUCTIONThe east Kunlun active fault is an important NWWtrending boundary fault on the northeasternmargin of the Qinghai-Xizang(Tibet)Plateau.The fault extends fromthe northside of the Qiangtangmassif in the west,runs eastward through the Kusai Lake,Dongdatan,Xidatan,Tuosuo Lake andMaqu to the north of Zoig毢(Van Der Woerd,et al.,2002;Ma Yinsheng,et al.,2005;Seismological Bureau of Qinghai Province,et al.,1999;Li Chunfeng,et al.2004).The intenseleft-lateral strike-slip move…  相似文献   

3.
Based on historical earthquake data, we use statistical methods to study integrated recurrence behaviors of strong earthquakes along 7 selected active fault zones in the Sichuan-Yunnan region. The results show that recurrences of strong earthquakes in the 7 fault zones display near-random, random and clustering behaviors. The recurrence processes are never quasiperiodic, and are neither strength-time nor time-strength dependent. The more independent segments for strong earthquake rupturing a fault zone has, the more complicated the corresponding recurrence process is. And relatively active periods and quiescent periods for earthquake activity occur alternatively. Within the active periods, the distribution of recurrence time intervals between earthquakes has relatively large discretion, and can be modelled well by a Weibull distribution. The time distribution of the quiescent periods has relatively small discretion, and can be approximately described by some distributions as the normal. Both the durations of the active periods and the numbers of strong earthquakes within the active periods vary obviously cycle by cycle, leading to the relatively active periods having never repeated quasi-periodically. Therefore, the probabilistic assessment for middle- and longterm seismic hazard for entireties of active fault zones based on data of historical strong earthquakes on the fault zones still faces difficulty.  相似文献   

4.
The opinions of two papers carried in the journal "Seismology and Geology" are discussed in the paper.One is that the Tangshan fault is a high-angle,west-dipping and thrust with strike-slip fault.The other is that the Fuzhuang-Xihe fault distributed on the east side of Tangshan city is the seismogenic fault that caused the Tangshan earthquake.For the former opinion,it needs to explain the relationship between the active style of the thrust Tangshan fault and the formation genesis of a Quaternary depression along the west side of Tangshan city.For the latter opinion,if the Fuzhuang-Xihe fault is the seismogenic fault of the Tangshan earthquake,it needs to explain the genesis relationship between this west-dip slip fault zone and the strike-slip surface fissure zone that extends through Tangshan city.And it needs more evidence exclude the possibility that the surface rupture belongs to the rupturing of a secondary structure.This paper suggests doing more work on the active fault that controls the Caobo Quaternary depression.  相似文献   

5.
Volume 15,Number 275INTRODUCTIONThe Xln抄al eafthquake swarrn occurred In Shulu basin In the western part ofNorih China PlainIncludes Malan M6.8 eafthquake In hn纽M Countyon Marchs,1966,Don驯aug M6.7 and M7.2earthquakes In Ningln County on March 22,1966,Balchekou M6.2 ealthquake In Shulu County onMarch 26,1966,and啊…ac M6.0 earthquake in Juhi County on March 29 1966.They aredlstnbutedin an elliptical area in N35”E direction with long axisd劝out 110 km and short axis o…  相似文献   

6.
Shallow seismic profiling in meizoseismal area of Xingtai earthquakes,phase division of Cenozoic movement of deep and shallow structures,analysis of characteristics of crustal and upper mantle structure,and comparative study on parameters of seismic sources indicate that the listric faults controlling the development of early Tertiary basin-range structure and eastward gently-dipping detachment below it in the Xingtai epicentral area are not related to the occurrence of Xingtai earthquakes.The Xingtai earthquake swarm is a product of threedimensional fracutre process in which the discontinuous “deep faults“,separated by NWtrending faults or by transverse barriers,successively tore,fractured,and propagated upward and ,hence,caused the stress between the adjacent deep faults to migrate and load under the action of latest tectonic stress field.The Xingtai seismogenic fault represents a “newly generated fault“ resulted from the upward tearing and propagation of the preexisting crustal“deep fault“.  相似文献   

7.
By systematically analyzing the data of gravity reiteration in the Hexi region and taking a dynamic viewpoint.we have studied the evolution characters of gravity field during the preparation-occurrence of the Jingtai Ms5.9 earthquake of June 6,2000,The patterns of dynamic change of the gravity field clearly reflected how the gravity field evolved from the quasi-homogeneous state to non-homogeneous state for earthquake preparation and then the earthquake occurred.Besides,we have also studied the relation between the characteristic gravity change and strong earthquake activity.  相似文献   

8.
1INTRODUCTION TheTianqiaogou Huangyangchuanfault(alsocalledGulangfault)isanimportantpartofanactivefaultzoneontheeasternsectionofthenorthernQilianMountains.Therecentactivityofthefaulthasbeenstudiedtodifferentdegrees(WanFuling,1987;InstituteofGeology,StateS…  相似文献   

9.
INTRODUCTION TheRedRiverfaultinsouthwestChina,aboundaryfaultbetweentheIndochinaplateandthe Yangtzeplate,haslongbeenatopicofgeneralinterest.Manystudieshavebeendoneonthegenesis,evolutionandtectonicchangesinthehistoryoftheAilaoshan RedRivertectoniczoneinterm…  相似文献   

10.
Using the 78 focal mechanism solutions of the fore shocks, main shock and after shocks of the earthquake sequence for the Yao'an earthquake, the characteristics of the focal faults and stress field for the earthquake sequence are analyzed. The results show that the main rupture plane of the Yao'an earthquake sequence is a tectonic fault with N50°W strike and steep dip and all the main shock, the fore shocks and the vast majority of after shocks occurred on the main rupture plane. A tectonic fracture with NNE-NE strike also participated in development process of the sequence. The focal stress field of the sequence dominated by principal compressional stress with nearly horizontal orientation SSE is consistent with the regional tectonic stress field. In the sequence development, the stress field in the focal region was complex with multi-azimuths and multi-action models and the focal rupture showed complex features with multi-directions and multi-patterns.  相似文献   

11.
The Bachu-Jiashi earthquake of Ms6.8 occurred on February 24, 2003, about 20km from the southeast of the 1997 - 1998 Jiashi seismic region in Xinjiang, and its aftershocks are rich and strong. Did the 1997 - 1998 Jiashi strong earthquake swarm trigger the Bachu-Jiashi Ms6.8 earthquake? The Atushi earthquake of Ms6.7 occurred in 1996, and the 1997 - 1998 Jiashi strong earthquake swarm occurred about 70km from the Atushi earthquake 10 months later. Did the Atushi earthquake of Ms6.7 encourage the 1997 - 1998 Jiashi strong earthquake swarm? There were 9 earthquakes with Ms6.0 from 1996 to 1997 in the Jiashi seismic region, how did they act on each other? To answer the above questions, the article studies the triggering effect of the activity process of the whole Jiashi earthquake swarm from the 1996 Atushi earthquake of Ms6.7, the 1997 - 1998 Jiashi strong swarm to the 2003 Bachu-Jiashi earthquake of Ms6.8, and analyzes the seismicity characteristics around the Jiashi region. The results show that the 1996 Atushi earthquake of Ms6.7 encouraged the 1997 - 1998 Jiashi strong swarm to some extent, the accumulative Coulomb stress change from the previous M6.0 earthquakes of the Jiashi strong swarm had certain triggering effects on the following M6.0 events, and the Coulomb stress change converted from the Jiashi strong swarm strongly encouraged the 2003 Bachu-Jiashi earthquake with Ms6.8.  相似文献   

12.
INTRODUCTIONThe Yingjing-Mabian-Yanjinthrust fault zone lies on the southeastern margin of Tibet .It startsfromthe south of Tianquaninthe north,and it extends southwards through Yingjing, Emei , Ebian,Mabian,Lidian to the north of Yanjin of Yunnan, with a total length of 275 km. The fault zoneintersects withthe southernsegment of the Longmengshanthrust fault zone onits northernsegment andborders the Huayingshan-Lianfengfault zone onits southernsegment .It is a 30 km-wide NW-trendin…  相似文献   

13.
Based on the fitting on paleoearthquake data of intra-plate regions in the northern part of Chi-na and giving a statistical model of time interdependence,the potential damage earthquakes in a definite future period and characteristics of present shocks along the Lingwu fault have been analyzed by using dangerous probability function and some new data concerned.We have in-ferred that the fault has entered a period that earthquakes will probably occur.There exists a potential danger that a strong earthquake with Ms7.0-7.5 will occur in 10-100a.  相似文献   

14.
INTRODUCTIONThe Lajishan Mountainlies onthe northeastern margin of Qinghai_Xizang(Tibet)plateau.It is ageomorphic gradient zone,separatingthe hinterland of Tibetfromthe Loess plateau.The Lajishanfaultis a product of Caledonian movement,havingexperienced m…  相似文献   

15.
The active and quiet phenomenon of moderate strong earthquakes one year before the earthquakes with Ms ≥ 7.0, the spatial distribution characteristics of the solid tide modulating and triggering earthquakes and the strong earthquake mechanisms on the Chinese continent have been studied. The secondary arcuate tectonic zone composed of the west Kunlun-A‘nye^maqe^n faults is believed to be a very important boundary to characterize strong earthquake activity of Ms ≥ 7.0 on the Chinese continent, that is, a boundary between the seismically active region and the quiet region of moderately strong earthquakes one year before earthquakes with Ms ≥ 7.0, and a boundary of the spatial distributions between the solid tidemodulating strong earthquakes ( Ms ≥ 7.0) and the non-modulating ones. It might be related with the characteristics of spatial distribution of focal mechanism solutions of strong earthquakes on the Chinese Continent.  相似文献   

16.
17.
The formation of strath and strath terrace is closely related to tectonic uplift in the drainage basin. Based on the investigation of straths at Yandantu and Changcaogou on the eastern segment of the northern margin fault of Altun, and in combination with the paleoclimatic data,the tectonic uplift since late Epipleistocene as revealed by stream terraces at the two places is discussed. At Yandantu, three levels of stream terraces( T1, T2 and T3 )have developed since 16ka BP, where T1, T3 and T2 are fill terraces and the buried major straths are exposed. The ages of three treads are dated to be about 16.1ka BP, 12 .Ska BP and 6.2ka BP, respectively. The three terraces reflect three tectonic uplift events, while the ages of the treads represent the occurrence time of these events. The stream is still beveling the bedrock and widening the channel at present, and the modern strath is being generated. The uplift rate is 4.8~4.5mm/a since 16.1 ka BP in this area. From 12.8ka B .P to 6.2ka BP, The uplift rate was 6.4mm/a.The uplift rate is 3. lmm/a since 6.2ka BP.At Changcaogou, four levels Of stream terraces(T1, T2, T3 and T1)have developed since 7ka BP. All of them are fill terraces. There are buried straths under the deposits. The buried major strath is exposed on T3 and T2 and the minor strath on T1‘and T1. The ages of treads of the three terraces (T3, T2 and T1’) are 7 ka BP, 3 ka BP and 2.5 ka BP, respectively. The four terraces reflect two uplift events induced by tectonic activities. One occurred in about 7 ka BP, and the other in 3ka BP. The uplift rate is 5.gmm/a since 7.0 ka BP at Changcaogou.From 7ka BP to 3ka BP, the uplift rate was 7.0mm/a, and since 3ka BP till now, the uplift rate is 4.7 mm/a.  相似文献   

18.
By shallow seismic prospecting, the Cenozoic Group in the sea area near the Yangtze Rver Mouth can be divided into five seismic sequences. They correspond to the Quaternary,Pliocene, Upper Miocene, Lower Miocene and Eocene respectively. The Quaternary System covers all the detecting area. The Tertiary System overlaps and thins out from NE to SW. The sedimentary basement mainly consists of volcanic rock (J3) and acidic rock (r35). Paleogene or Late Cretaceous basins are not found there. The faults that have been detected are all normal faults. They can be divided into three groups (NE, NW, near EW) by their trend. The NE and NW-trending faults are predominant, and agree with aeromagnetic anomaly. Their length and displacement are larger than that of the EW-trending faults. The activity of the NEtrending faults is different in different segments. The SW segment is a Quaternary fault, the middle segment is a Neogene fault, The NE is Paleogene. But the segment of the NW-trending fault is not obvious. The average vertical displacement rate is about 0.015mm/a.  相似文献   

19.
A seismic-geological disaster can obviously affect an engineering site in three aspects:the first is ground faulting caused by the earthquake;the second is strong ground motion;the third is geological disasters such as landslides,mud-rock flows and liquefaction.Through the case study of selection of the huge transformer substation in the Shimian region of Sichuan Province,this paper proposes that the activity pattern and spatial distribution of faults near the site are crucial factors for evaluating the seismic-geological conditions for the location of huge transformer substations.  相似文献   

20.
The interaction zone between southern Tianshan and northern Tarim is located at the northeast side of Pamir. It is a region with high seismicity. We constructed a seismotectonic model for the west part of this zone from geological profiles, deep crust seismic detection and earthquake focal mechanisms data. Based on the synthesized geological features, deep crust structure, and earthquake focal mechanisms, we think that the main regional tectonic feature is that the Tianshan tecto-lithostratigraphic unit overthrusts on the Tarim block. The Tianshan tectonic system includes the Maidan fault and thrust sheets in front of the fault; The Tarim tectonic system includes the underground northern Tarim margin fault, conjugate faults in basement and overthrust fault in shallow. The northern Tarim margin fault is a high angle fault deep in the Tarim crust, adjusting different trending deformation between Tianshan and Tarim. It is a major active fault that can generate large earthquakes. The other faults, such as the Tianshan overthrust system and the Tarim basement faults in this area may generate moderately strong earthquakes with different styles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号