共查询到20条相似文献,搜索用时 38 毫秒
1.
We report the measurements of thermal conductivity for some Higher Himalayan Crystalline rocks from Joshimath and Uttarkashi areas of the Garhwal Himalaya. Seventy-three rock samples including gneiss, metabasic rock and quartzite were measured. Gneissic rocks, which include augen gneiss, banded gneiss, felsic gneiss and fine-grained gneiss, exhibit a wide range in conductivity, from 1.5 to 3.6 Wm− 1K− 1 for individual samples, and 2.1 to 2.7 Wm− 1K− 1 for the means. Among these, augen gneisses and banded gneisses show the largest variability. Of all the rock types, quartzites (mean 5.4 Wm− 1K− 1) and metabasic rocks (mean 2.1 Wm− 1K− 1) represent the highest and lowest mean values respectively. The range in conductivity observed for gneissic rocks is significantly higher than that generally found in similar rock types in cratonic areas. The rock samples have very low porosity and exhibit feeble anisotropy, indicating that they do not contribute to the variability in thermal conductivity. Besides variations in mineralogical composition, the heterogeneous banding as well as intercalations with metabasic rocks and quartz veins, a common occurrence in structurally complex areas, appears to cause the variability in conductivity. The study therefore brings out the need for systematic characterization of thermophysical properties of major rock types comprising the Himalayan region for lithospheric thermal modeling, assessment of geothermal energy and geo-engineering applications in an area. The dataset constitutes the first systematic measurements on the Higher Himalayan Crystalline rocks. 相似文献
2.
3.
Normal faults on mesoscopic scale are observed in the Panjal Thrust Zone in the Dalhousie area of western Htmachal. The boundary
between the southern margin of the Higher Himalaya Crystalline (HHC) of Zanskar and the Chamba syncline sequence is also described
as a normal fault, referred to as Bhadarwah Normal Fault in the Bhadarwah area of Doda district on the basis of field mapping
and shear sense criteria using S-C fabric and porphyroblast rotation. The occurrence of these normal faults suggests that
the extensional tectonic regime was not restricted only to the Zanskar shear zone area but that it also occurs south of the
Higher Himalayan range. This suggests NE-directed subhorizontal extension and exhumation of deeper level rocks of Higher Himalaya
Crystallines. 相似文献
4.
5.
On the basis of stratigraphical and geological data, paleogeographical and palinspastic reconstructions of the Kazakhstan Paleozoides were done; their multistage geodynamic evolution was considered; their tectonic zoning was proposed. The main stages are described: the initiation of the Cambrian and Ordovician island arcs; the development of the Kazakhstan accretionary–collisional composite continent in the Late Ordovician as a result of continental subduction and the amalgamation of Gondwana blocks with the island arcs (a long granitoid collisional belt also formed in this period); the development of the Devonian and Carboniferous–Permian active margins of the composite continent and its tectonic destruction in the Late Paleozoic.In the Late Ordovician, compensated terrigenous and volcanosedimentary complexes formed within Kazakhstania and developed in the Silurian. The Sakmarian, Tagil, Eastern Urals, and Stepnyak volcanic arcs formed at the boundaries with the Ural, Turkestan, and Junggar–Balkhash Oceans. In the late Silurian, Kazakhstania collided with the island arcs of the Turkestan and Ob'–Zaisan Oceans, with the formation of molasse and granite belts in the northern Tien Shan and Chingiz. This was followed by the development of the Devonian and Carboniferous–Permian active margins of the composite continent and the inland formation of the Early Devonian rift-related volcanosedimentary rocks, Middle–Late Devonian volcanic molasse, Late Devonian–Early Carboniferous rift-related volcanosedimentary rocks, terrigenous–carbonate shelf sediments, and carbonaceous lake–bog sediments, and the Middle–Late Carboniferous clastic rocks of closed basins. In the Permian, plume magmatism took place on the southern margin of the Kazakhstan composite continent. It was simultaneous with the formation of red-colored molasse and the tectonic destruction of the Kazakhstan Paleozoides as a result of a collision between the East European and Kazakhstan–Baikal continents. 相似文献
6.
Geotectonics - Central Asia exceeds neighboring territories in the intensity of Quaternary uplifts and active faulting. The active fault kinematics differ in the northeast of the region, from... 相似文献
7.
The metamorphism in the Central Himalaya 总被引:10,自引:0,他引:10
A. PECHER 《Journal of Metamorphic Geology》1989,7(1):31-41
ABSTRACT All along the Himalayan chain an axis of crystalline rocks has been preserved, made of the Higher Himalaya crystalline and the crystalline nappes of the Lesser Himalaya. The salient points of the metamorphism, as deduced from data collected in central Himalaya (central Nepal and Kumaun), are:
- 1 The Higher Himalaya crystalline, also called the Tibetan Slab, displays a polymetamorphic history with a first stage of Barrovian type overprinted by a lower pressure and/or higher temperature type metamorphism. The metamorphism is due to quick and quasi-adiabatic uplift of the Tibetan Slab by transport along an MCT ramp, accompanied by thermal refraction effects in the contact zone between the gneisses and their sedimentary cover. The resulting metamorphic pattern is an apparent (diachronic) inverse zonation, with the sillimanite zone above the kyanite zone.
- 2 Conversely, the famous inverted zonation of the Lesser Himalaya is basically a primary pattern, acquired during a one-stage prograde metamorphism. Its origin must be related to the thrusting along the MCT, with heat supplied from the overlying hot Tibetan Slab, as shown by synmetamorphic microstructures and the close geometrical relationships between the metamorphic isograds and the thrust.
- 3 Thermal equilibrium is reached between units above and below the MCT. Far behind the thrust tip there is good agreement between the maximum temperature attained in the hanging wall and the temperature of the Tibetan Slab during the second metamorphic stage; but closer to the MCT front, the thermal accordance between both sides of the thrust is due to a retrogressive metamorphic episode in the basal part of the Tibetan Slab.
8.
R. C. Patel Vikas Adlakha Paramjeet Singh Yogesh Kumar Nand Lal 《Journal of the Geological Society of India》2011,77(1):47-72
The crystallines in the Kumaon Himalaya, India are studied along Goriganga, Darma and Kaliganga valleys and found to be composed
of two high-grade metamorphic gneiss sheets i.e. the Higher Himalayan Crystalline (HHC) and Lesser Himalayan Crystalline (LHC)
zones. These were tectonically extruded as a consequence of the southward directed propagation of crustal deformation in the
Indian plate margin. The HHC and its cover rocks i.e. the Tethyan Sedimentary Zone (TSZ) are exposed through tectonic zones
within the hinterland of Kumaon Himalaya. The HHC records history of at least one episode of pre-Himalayan deformation (D1), three episodes of Himalayan deformation (D2, D3, D4). The rocks of the HHC in Kumaon Himalaya are thoroughly transposed by D2 deformation into NW-SE trending Sm (S1+S2). The extent of transposition and a well-developed NE-plunging L2 lineation indicate intense strain during D2 throughout the studied portion of the HHC. Ductile flow continued, resulting in rotation of F1 and F2 folds due NE-direction and NW-SE plunging F3 folds within the HHC. The over thickened crystalline was finally, superimposed by late-to-post collisional brittle-ductile
deformation (D4) and exposed the rocks to rapid erosion. 相似文献
9.
Dr. Surendar Kumar 《International Journal of Earth Sciences》1975,64(1):977-992
The foci distribution of upper mantle earthquakes occurred between 1961 and 1972 in Himalayan, Tibetan and Hindukush regions, were studied and compared. The V-shaped pockets above a vertical plane have shown a relationship with the dip-slip type or normal faulting at the borders of the continental plates. The left-lateral and right-lateral displacements of Kirthar-Sulaiman shear zone and Brailly fault respectively found by the focal mechanism indicate a relative difference in motion between the Kashmir region and Nepal region and the uniform and right angle displacement of Tibetan Plateau has produced the Saradah depression. On the basis of seismic and geological evidences a simple tectonic model is proposed. 相似文献
10.
《Geodinamica Acta》2013,26(1-3):127-143
The western part of the Polish Outer Carpathians is built up from the thrust, imbricated Upper Jurassic-Neogene flysch deposits. The following Outer Carpathian nappes have been distinguished: Magura Nappe, Fore-Magura group of nappes, Silesian, Subsilesian and Skole nappes. Interpretation of seismic and magnetotelluric survey from the region South of Wadowice, allows observation of relationship between basement and flysch nappes in the Outer Carpathians. It also allows identification of dislocation cutting both flysch nappes and their basement. All the Outer Carpathian nappes are thrust over the southern part of the North European Platform. The platform basement is composed of older Precambrian metamorphic rocks belonging to the Bruno-Vistulicum terrane. Sedimentary cover consists of Paleozoic, Mesozoic and Neogene sequences. The characteristic features of this boundary are horsts and troughs of general direction NW-SE, turning W-E. Faults cutting only the consolidated basement and the Paleozoic cover were formed during the Hercynian Orogeny in the Carboniferous and the Early Permian. Most of the older normal faults were covered by allochtonous flysch nappes forming thus the blind faults. During the last stage of the geodynamic development the Carpathians thrust sheets moved towards their present position. Displacement of the Carpathians northwards is related to development of dextral strike-slip faults of N—S direction. The orientation of this strike-slip fault zones zone more or less coincides with the surface position of the major faults perpendicular to the strike of the Outer Carpathian thrustsheets. The huge fault cuts formations from the Paleozoic basement through the flysch allochton between the boreholes in Sucha Beskidzka area. The displacement of nappes of the Carpathian overthrust and diapiric extrusion of plastic formations of the lower flysch units occurred along this fault. 相似文献
11.
Increased seismicity and occurrences of hot springs having surface temperature of 36–58 °C are observed in the central part of India (74–81° E, 20–25° N), where the NE trending Middle Proterozoic Aravalli Mobile Belt meets the ENE trending Satpura Mobile Belt. Earlier Deep Seismic Sounding (DSS) studies along Thuadara-Sendhwa-Sindad profile in the area has showed Mesozoic Sediments up to around 4 km depth covered by Deccan Trap and the Moho depth with a boundary velocity (Pn) of 8.2 km/s. In the present study, surface heat flow of 48 ± 4 mW m?2 has been estimated based on Pn velocity, which agrees with the value of heat flow of 52 ± 4 mW m?2 based on Curie point isotherms estimates. The calculated temperature-depth profile shows temperature of 80–120 °C at the basement, which is equivalent to oil window temperature in Mesozoic sediments and around 570–635 °C at Moho depth of 38–43 km and the thermal lithosphere is about 110 km thick, which is comparatively higher than those of adjoining regions. The present study reveals the brittle–ductile transition zone at 14–41 km depth (temperature around 250–600 °C) where earthquake nucleation takes place. 相似文献
12.
Gabriel Dengo Otto Bohnenberger Samuel Bonis 《International Journal of Earth Sciences》1970,59(3):1215-1232
The relation of volcanism to tectonics in the Central American region has been established by a review of the literature as well as by field and photogeological work of the authors. The association of a deep trench off the Pacific coast, a parallel seismic belt, and a similarly oriented chain of volcanic vents farther inland, has been recognized by numerous earlier workers. These features form a tectonic unit, and are here termed the Pacific marginal zone.Seismic foci on the northeastern edge of the southern part of the Middle American Trench define a fault zone which dips under the continent and suggests movement of the oceanic plate underneath the Central American continent.An impressive chain of volcanic cones and associated shallow seismic foci is aligned along a prominent graben, best developed in Nicaragua where it is known as the Nicaraguan Depression. This feature probably originated in late Tertiary time. The southeastern end of the graben terminates at the northern ranges of the Talamanca Cordillera in Costa Rica. At the Gulf of Fonseca the trend of the graben changes from NW to E-W; the graben continues as the Central Depression of El Salvador at a higher elevation. Only the fault of the seaward border of the graben is defined in Guatemala, where it is represented by a NW trending volcanic chain.In Nicaragua and El Salvador the oldest cones are situated on the north-eastern boundary fault zone of the graben. These include remnants of the largest volcanic structures of the region. All the active volcanoes are on the southwestern boundary fault belt. Cross fracturing of this fault system controlled later northerly trending cone alignments, often with the youngest cones on the south end.The main graben and associated faults are considered results of tensional stresses on the crest of geanticlinal arching on the landward side of the Middle American Trench. This arching is believed to be due to regional compression originated by the movement of the oceanic plate against the mainland.In northwestern Central America the youngest stresses produced N-S normal faults that are marked by well-defined scarps. These stresses may be the result of right-lateral motion along the underthrust fault zone. The complex Comayagua graben north of the Gulf of Fonseca, the Ipala graben and associated faults in southeastern Guatemala, and the Guatemala City graben are all north-south features illustrating the extent and youth of this structural trend.The distribution of volcanic vents along the Nicaraguan Depression and the N-S trends underscores the close tectonic control of volcanism.
Zusammenfassung Der Zusammenhang zwischen Tektonik und Vulkanismus im mittelamerikanischen Raum wird aufgezeigt aufgrund einer Literaturdurchsicht und feldgeologischer Arbeiten der Verfasser. Die Beziehungen zwischen einem Tiefseegraben vor der pazifischen Küste, einem dem Festland parallelen seismischen Gürtel und einer ebenso orientierten Vulkankette weiter im Inland sind von früheren Bearbeitern bereits erkannt worden. Diese drei Einheiten werden hier zusammengefaßt und als pazifische Randzone bezeichnet.Erdbebenherde am Nordostrand des mittelamerikanischen Tiefseegrabens weisen auf eine Störungszone hin, die unter den Kontinent einfällt. Der Bewegungssinn spricht für ein Abtauchen der ozeanischen Platte unter das mittelamerikanische Festland.Eine eindrucksvolle Vulkankette und die mit ihr verbundenen Erdbebenherde sind längs eines bedeutenden Grabens aufgereiht, der in Nicaragua am deutlichsten ausgebildet ist und dort Nicaragua-Senke genannt wird. Diese tektonische Einheit entstand wahrscheinlich im Jung-Tertiär. Der Graben beginnt im Südosten an den nördlichen Ausläufern der Talamanca-Kordillere in Costa Rica.In Nicaragua verläuft er NW. Am Golf von Fonseca schwenkt er in eine E-W-Richtung und setzt sich in El Salvador in einem höheren Niveau als Zentral-Depression fort. In Guatemala ist nur der Südrand des Grabens erkennbar. Er ist gekennzeichnet durch eine in NW-Richtung aufgereihte Vulkankette. In Nicaragua und El Salvador liegen die ältesten Vulkane auf dem nordöstlichen Grenzbruch des Grabens. Zu dieser Gruppe zählen die größten Rumpfvulkane. Die meisten Kegel und alle tätigen Vulkane liegen hingegen auf dem südwestlichen Grenzbruchstreifen. Auf Querbrüchen haben sich jüngere, nördlich ausgerichtete Kegelreihen gebildet. Die jüngsten Kegel liegen meistens am südlichen Ende der Querbrüche.Es wird angenommen, daß der Hauptgraben und seine Störungen im Scheitel einer zum mittelamerikanischen Tiefseegraben parallel verlaufenden Aufwölbung entstanden sind. Die Aufwölbung kann auf Kompression der ozeanischen Platte gegen das Festland zurückgeführt werden.Im nordwestlichen Zentralamerika bewirkten jüngere Beanspruchungen die Bildung von N-S-Brüchen, die heute morphologisch als Steilkanten hervortreten. Diese Beanspruchungen können durch rechtslaterale Bewegungen entlang der pazifischen Störungszone ausgelöst worden sein. Beispiele dieser N-S-Struktur sind: Die Comayagua-Grabenzone, nördlich des Golfs von Fonseca, der Ipala-Graben und sein Störungssystem in Südost-Guatemala und der Guatemala-Stadt-Graben. Diese N-S-Störungen kennzeichnen das Ausmaß und das geringe Alter der Grabenbildung.Die Anordnung der Vulkane entlang der Nicaragua-Senke und der N-S-Brüche stellen die engen Beziehungen zwischen Tektonik und Vulkanismus in der pazifischen Randzone Mittelamerikas heraus.
Resumen Mediante información tomada de la literatura, trabajos de campo e interpretation fotogeológica, se establece la relación entre el volcanismo y la tectónica en la región de América Central. Se usa la denominación de zona marginal del Pacífico para identificar, como una unidad, la asociación ya reconocida por otros autores de la profunda Fosa Mesoamericana frente a la costa del Pacífico de America Central y las franjas paralelas de actividad sísmica y de cadenas volcánicas.Los focos sísmicos en el borde nororiental de la Fosa Mesoamericana definen una gran zona de afallamiento inclinada hacia el continente, cuyos movimientos indican que un bloque de la corteza oceánica se sumerge bajo la porción continental de America Central.Una imponente serie de conos volcánicos, asociada a focos sísmicos poco profundos, está situada a lo largo de un gran graben conocido como Depresión de Nicaragua, por ser en ese país donde aparece más claramente definido. Este graben, que posiblemente se originó durante el Terciario tardío, termina en su extremo suroriental contra las estribaciones de la parte norte de la Cordillera de Talamanca, en Costa Rica. En Nicaragua el graben está orientado hacia el NW hasta el Golfo de Fonseca donde toma un rumbo E-W a través de El Salvador, donde se encuentra a mayor elevación. En Guatemala se conoce únicamente una línea de fallas, la más próxima al mar, definida por una cadena de volcanes que tiene nuevamente dirección NW.En Nicaragua y El Salvador los conos volcánicos más antiguos están situados a lo largo de las fallas que limitan al graben en su lado nororiental. Allí se encuentran las ruinas de los edificos volcánicos más grandes de la región. La mayoría de los conos que incluye todos los actualmente activos, se localizan a lo largo de las fallas del borde suroccidental del graben. Fracturas transversales controlan la localization de varios grupos de conos alineados de N-S. Los volcanes más jóvenes se encuentran frecuentemente en el extremo sur.Se postula que el graben principal y otras fallas del mismo sistema han sido formados como resultado de esfuerzos de tensión, en la cresta de un geanticlinal que resultó del arqueamiento del lado terrestre de la zona marginal del Pacífico. Dicho arqueamiento se cree que resulta de la compresión regional debida al movimiento del bloque oceánico contra el continente.En la parte noroccidental de América Central los esfuerzos más recientes produjeron fallas orientadas N-S, fácilmente identificables por sus bien marcadas escarpas. Estos esfuerzos pueden haber resultado del desplazamiento dextromóvil a lo largo de las zonas de afallamiento paralelas a la Fosa Mesoamericana.El complejo graben de Comayagua, al norte del Golfo de Fonseca, y los graben de Ipala y de la Ciudad de Guatemala, orientados también de norte a sur, ilustran la extension y la joven edad de las fracturas.La distribución de los focos volcánicos a lo largo de la Depresión de Nicaragua y de las fracturas N-S muestran de manera evidente, la estrecha relación que existe entre la tectónica y la localización del volcanismo en la zona marginal del Pacifico de America Central.
, - . - , . . , , . , , - . - Talamanca Kordillere -. - - . Fanseca . . , , . - . . . , . . - N-S , . . : Comayagua, Fanseca, Ipala - . - . , .相似文献
13.
《International Geology Review》2012,54(8):661-735
The Longmen Shan region includes, from west to east, the northeastern part of the Tibetan Plateau, the Sichuan Basin, and the eastern part of the eastern Sichuan fold-and-thrust belt. In the northeast, it merges with the Micang Shan, a part of the Qinling Mountains. The Longmen Shan region can be divided into two major tectonic elements: (1) an autochthon/parautochthon, which underlies the easternmost part of the Tibetan Plateau, the Sichuan Basin, and the eastern Sichuan fold-and-thrust belt; and (2) a complex allochthon, which underlies the eastern part of the Tibetan Plateau. The allochthon was emplaced toward the southeast during Late Triassic time, and it and the western part of the autochthon/parautochthon were modified by Cenozoic deformation. The autochthon/parautochthon was formed from the western part of the Yangtze platform and consists of a Proterozoic basement covered by a thin, incomplete succession of Late Proterozoic to Middle Triassic shallow-marine and nonmarine sedimentary rocks interrupted by Permian extension and basic magmatism in the southwest. The platform is bounded by continental margins that formed in Silurian time to the west and in Late Proterozoic time to the north. Within the southwestern part of the platform is the narrow N-trending Kungdian high, a paleogeographic unit that was positive during part of Paleozoic time and whose crest is characterized by nonmarine Upper Triassic rocks unconformably overlying Proterozoic basement. In the western part of the Longmen Shan region, the allochthon is composed mainly of a very thick succession of strongly folded Middle and Upper Triassic Songpan Ganzi flysch. Along the eastern side and at the base of the allochthon, pre-Upper Triassic rocks crop out, forming the only exposures of the western margin of the Yangtze platform. Here, Upper Proterozoic to Ordovician, mainly shallow-marine rocks unconformably overlie Yangtze-type Proterozic basement rocks, but in Silurian time a thick section of fine-grained clastic and carbonate rocks were deposited, marking the initial subsidence of the western Yangtze platform and formation of a continental margin. Similar deep-water rocks were deposited throughout Devonian to Middle Triassic time, when Songpan Ganzi flysch deposition began. Permian conglomerate and basic volcanic rocks in the southeastern part of the allochthon indicate a second period of extension along the continental margin. Evidence suggests that the deep-water region along and west of the Yangtze continental margin was underlain mostly by thin continental crust, but its westernmost part may have contained areas underlain by oceanic crust. In the northern part of the Longmen Shan allochthon, thick Devonian to Upper Triassic shallow-water deposits of the Xue Shan platform are flanked by deep-marine rocks and the platform is interpreted to be a fragment of the Qinling continental margin transported westward during early Mesozoic transpressive tectonism. In the Longmen Shan region, the allochthon, carrying the western part of the Yangtze continental margin and Songpan Ganzi flysch, was emplaced to the southeast above rocks of the Yangtze platform autochthon. The eastern margin of the allochthon in the northern Longmen Shan is unconformably overlapped by both Lower and Middle Jurassic strata that are continuous with rocks of the autochthon. Folded rocks of the allochthon are unconformably overlapped by Lower and Middle Jurassic rocks in rare outcrops in the northern part of the region. They also are extensively intruded by a poorly dated, generally undeformed belt, of plutons whose ages (mostly K/Ar ages) range from Late Triassic to early Cenozoic, but most of the reliable ages are early Mesozoic. All evidence indicates that the major deformation within the allochthon is Late Triassic/Early Jurassic in age (Indosinian). The eastern front of the allochthon trends southwest across the present mountain front, so it lies along the mountain front in the northeast, but is located well to the west of the present mountain front on the south. The Late Triassic deformation is characterized by upright to overturned folded and refolded Triassic flysch, with generally NW-trending axial traces in the western part of the region. Folds and thrust faults curve to the north when traced to the east, so that along the eastern front of the allochthon structures trend northeast, involve pre-Triassic rocks, and parallel the eastern boundary of the allochthon. The curvature of structural trends is interpreted as forming part of a left-lateral transpressive boundary developed during emplacement of the allochthon. Regionally, the Longmen Shan lies along a NE-trending transpressive margin of the Yangtze platform within a broad zone of generally N-S shortening. North of the Longmen Shan region, northward subduction led to collision of the South and North China continental fragments along the Qinling Mountains, but northwest of the Longmen Shan region, subduction led to shortening within the Songpan Ganzi flysch basin, forming a detached fold-and-thrust belt. South of the Longmen Shan region, the flysch basin is bounded by the Shaluli Shan/Chola Shan arc—an originally Sfacing arc that reversed polarity in Late Triassic time, leading to shortening along the southern margin of the Songpan Ganzi flysch belt. Shortening within the flysch belt was oblique to the Yangtze continental margin such that the allochthon in the Longmen Shan region was emplaced within a left-lateral transpressive environment. Possible clockwise rotation of the Yangtze platform (part of the South China continental fragment) also may have contributed to left-lateral transpression with SE-directed shortening. During left-lateral transpression, the Xue Shan platform was displaced southwestward from the Qinling orogen and incorporated into the Longmen Shan allochthon. Westward movement of the platform caused complex refolding in the northern part of the Longmen Shan region. Emplacement of the allochthon flexurally loaded the western part of the Yangtze platform autochthon, forming a Late Triassic foredeep. Foredeep deposition, often involving thick conglomerate units derived from the west, continued from Middle Jurassic into Cretaceous time, although evidence for deformation of this age in the allochthon is generally lacking. Folding in the eastern Sichuan fold-and-thrust belt along the eastern side of the Sichuan Basin can be dated as Late Jurassic or Early Cretaceous in age, but only in areas 100 km east of the westernmost folds. Folding and thrusting was related to convergent activity far to the east along the eastern margin of South China. The westernmost folds trend southwest and merge to the south with folds and locally form refolded folds that involve Upper Cretaceous and lower Cenozoic rocks. The boundary between Cenozoic and late Mesozoic folding on the eastern and southern margins of the Sichuan Basin remains poorly determined. The present mountainous eastern margin of the Tibetan Plateau in the Longmen Shan region is a consequence of Cenozoic deformation. It rises within 100 km from 500–600 m in the Sichuan Basin to peaks in the west reaching 5500 m and 7500 m in the north and south, respectively. West of these high peaks is the eastern part of the Tibetan Plateau, an area of low relief at an elevations of about 4000 m. Cenozoic deformation can be demonstrated in the autochthon of the southern Longmen Shan, where the stratigraphic sequence is without an angular unconformity from Paleozoic to Eocene or Oligocene time. During Cenozoic deformation, the western part of the Yangtze platform (part of the autochthon for Late Triassic deformation) was deformed into a N- to NE-trending foldandthrust belt. In its eastern part the fold-thrust belt is detached near the base of the platform succession and affects rocks within and along the western and southern margin of the Sichuan Basin, but to the west and south the detachment is within Proterozoic basement rocks. The westernmost structures of the fold-thrust belt form a belt of exposed basement massifs. During the middle and later part of the Cenozoic deformation, strike-slip faulting became important; the fold-thrust belt became partly right-lateral transpressive in the central and northeastern Longmen Shan. The southern part of the fold-thrust belt has a more complex evolution. Early Nto NE-trending folds and thrust faults are deformed by NW-trending basementinvolved folds and thrust faults that intersect with the NE-trending right-lateral strike-slip faults. Youngest structures in this southern area are dominated by left-lateral transpression related to movement on the Xianshuihe fault system. The extent of Cenozoic deformation within the area underlain by the early Mesozoic allochthon remains unknown, because of the absence of rocks of the appropriate age to date Cenozoic deformation. Klippen of the allochthon were emplaced above the Cenozoic fold-andthrust belt in the central part of the eastern Longmen Shan, indicating that the allochthon was at least partly reactivated during Cenozoic time. Only in the Min Shan in the northern part of the allochthon is Cenozoic deformation demonstrated along two active zones of E-W shortening and associated left-slip. These structures trend obliquely across early Mesozoic structures and are probably related to shortening transferred from a major zone of active left-slip faulting that trends through the western Qinling Mountains. Active deformation is along the left-slip transpressive NW-trending Xianshuihe fault zone in the south, right-slip transpression along several major NE-trending faults in the central and northeastern Longmen Shan, and E-W shortening with minor left-slip movement along the Min Jiang and Huya fault zones in the north. Our estimates of Cenozoic shortening along the eastern margin of the Tibetan Plateau appear to be inadequate to account for the thick crust and high elevation of the plateau. We suggest here that the thick crust and high elevation is caused by lateral flow of the middle and lower crust eastward from the central part of the plateau and only minor crustal shortening in the upper crust. Upper crustal structure is largely controlled in the Longmen Shan region by older crustal anisotropics; thus shortening and eastward movement of upper crustal material is characterized by irregular deformation localized along older structural boundaries. 相似文献
14.
Geotectonics - The article considers the features of the tectonics of the Central Russian deformation belt located in the central part of the East European Platform. The belt is traced in a wide... 相似文献
15.
Daniela Rubatto Sumit Chakraborty Somnath Dasgupta 《Contributions to Mineralogy and Petrology》2013,165(2):349-372
The petrology and timing of crustal melting has been investigated in the migmatites of the Higher Himalayan Crystalline (HHC) exposed in Sikkim, India. The metapelites underwent pervasive partial melting through hydrous as well as dehydration melting reactions involving muscovite and biotite to produce a main assemblage of quartz, K-feldspar, plagioclase, biotite, garnet ± sillimanite. Peak metamorphic conditions were 8–9 kbar and ~800 °C. Monazite and zircon crystals in several migmatites collected along a N–S transect show multiple growth domains. The domains were analyzed by microbeam techniques for age (SHRIMP) and trace element composition (LA-ICP-MS) to relate ages to conditions of formation. Monazite preserves the best record of metamorphism with domains that have different zoning pattern, composition and age. Zircon was generally less reactive than monazite, with metamorphic growth zones preserved in only a few samples. The growth of accessory minerals in the presence of melt was episodic in the interval between 31 and 17 Ma, but widespread and diachronous across samples. Systematic variations in the chemical composition of the dated mineral zones (HREE content and negative Eu anomaly) are related to the variation in garnet and K-feldspar abundances, respectively, and thus to metamorphic reactions and P–T stages. In turn, this allows prograde versus decompressional and retrograde melt production to be timed. A hierarchy of timescales characterizes melting which occurred over a period of ~15 Ma (31–17 Ma): a given block within this region traversed the field of melting in 5–7 Ma, whereas individual melting reactions lasted for time durations below, or approaching, the resolution of microbeam dating techniques (~0.6 Ma). An older ~36 Ma high-grade event is recorded in an allocthonous relict related to mafic lenses. We identify two sections of the HHC in Sikkim that traversed similar P–T conditions at different times, separated by a tectonic discontinuity. The higher structural levels reached melting and peak conditions later (~26–23 Ma) than the lower structural levels (~31–27 Ma). Diachronicity across the HHC cannot be reconciled with channel flow models in their simplest form, as it requires two similar high-grade sections to move independently during collision. 相似文献
16.
Deglaciation of western Central Norway 总被引:4,自引:0,他引:4
JOHAN LUDVIG SOLLID LEIF SØRBEL 《Boreas: An International Journal of Quaternary Research》1979,8(2):233-239
The glacier movements and corresponding ice margins in Central Norway during Younger Dryas and Preboreal are reconstructed. Scattered, older marginal deposits are difficult to correlate. Raised beach features indicate that the deep fjords became ice-free at an early stage due to calving. In Møre og Romsdal county the glacier front lay at the fjord heads during Younger Dryas, with extensive local glaciation in the intervening mountain areas, and a limit of glaciation 500–600 m lower than the present. In certain places local moraines older than Younger Dryas have been preserved. Autochthonous block fields are widespread in the mountains of Møre og Romsdal. The lower limit of block fields lies at c. 500 m above sea level on the outermost coast and rises to c. 1500 m above sea level in the interior fjord country. No erratics, striation or lateral moraines from the inland ice have been found above this limit. Its gradient, which in outer fjord districts is about 1%, seems to indicate the ice surface at the last maximum of Weichsel glaciation. 相似文献
17.
The Huimin (惠民) depression is a third-level tectonic element of the Bohai (渤海) Bay basin in eastern China. The central uplift belt is the most important oil and gas accumulation zone in the depression, but the lack of adequate geological studies in the area has greatly hindered exploration and development. In this article, using seismic data, fracture mechanics, and a combination of data on fault growth indices and fault throws, we present an analysis of tectonic activity in the central uplift belt and adja... 相似文献
18.
A field study was conducted to assess variations in physico-chemical characteristics of water of the springs located within
the boundary of a Central Himalayan town where the springwater is used for drinking purposes. Monitoring of 12 springs was
carried out for three seasons (winter, summer and monsoon). The results indicate direct influence of unplanned sewage disposal
on the springwater quality as reflected by significant regional variations in the concentration of nitrates, chlorides, sulfates,
sulfides and electrical conductivity. Population density varies within the town from 3110 to 14 137 persons/km–2 and has direct relationship with water quality. Springs located in the densely populated area had higher concentrations of
all these compounds. Concentrations of nitrates up to 60 ppm were observed in some springs, making water unsuitable for human
consumption. No significant changes were observed in springwater quality during different seasons.
Received: 3 February 1995 · Accepted: 27 February 1996 相似文献
19.
青藏高原腹地典型盆-山构造形成时代 总被引:13,自引:2,他引:13
青藏高原腹地发育NE向、NW向与SN向不同方向的盆-山构造系统.应用热年代学与ESR测年方法,测定青藏高原腹地典型盆-山构造-地貌的形成时期.结果表明,羌塘地块南部NE向双湖-和平盆-山构造的形成时期为0~5 Ma,拉萨地块中部NE向羊八井-当雄盆-山构造裂陷开始时代为6.8~8 Ma,而拉萨地块中部NW向格仁错-申扎盆-山构造的形成时期为0~6.5 Ma.青藏高原腹地典型盆-山构造-地貌初始形成时代相近,约为5~8 Ma,对应于区域构造环境自近SN向挤压缩短向近EW向伸展裂陷的转变时代. 相似文献
20.
Seismicity in the western Himalayas is highly variable. Several historical and instrumentally recorded devastating earthquakes originated in the western Himalayas which are part of the Alpine–Himalayan belt. Earthquakes cause tremendous loss of life and to the built environment. The amount of loss in terms of life and infrastructure has been rising continuously due to significant increase in population and infrastructure. This study is an attempt to identify seismically susceptible areas in western Himalaya, using pattern recognition technique. An area between latitude 29°–36°N and longitude 73°–80°E was considered for this study. Pattern recognition starts with identification, selection and extraction of features from seismotectonic data. These features are then subjected to discriminant analysis and the study area was classified into three categories, viz., Area A: most susceptible area, Area B: moderately susceptible area, and Area C: least susceptible area. Results show that almost the entire states of Himachal Pradesh and Uttarakhand and a portion of Jammu & Kashmir are classified as Area A, while most of Jammu & Kashmir is classified as Area B and the Indo-Gangetic plains are classified as Area C. 相似文献