首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
We present the results of a detailed spectral analysis of optically faint hard X-ray sources in the Chandra deep fields selected on the basis of their high X-ray to optical flux ratio (X/O). The stacked spectra of high X/O sources in both Chandra deep fields, fitted with a single power-law model, are much harder than the spectrum of the X-ray background (XRB). The average slope is also insensitive to the 2–8 keV flux, being approximately constant around Γ≃ 1 over more than two decades, strongly indicating that high X/O sources represent the most obscured component of the XRB. For about half of the sample, a redshift estimate (in most of the cases a photometric redshift) is available from the literature. Individual fits of a few of the brightest objects and of stacked spectra in different redshift bins imply column densities in the range  1022–1023.5 cm−2  . A trend of increasing absorption towards higher redshifts is suggested.  相似文献   

5.
6.
We present a measurement of the cluster X-ray luminosity–temperature ( L – T ) relation out to high redshift ( z ∼0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fitted in redshift and luminosity bins. The resulting temperature and luminosity measurements of these bins, which occupy a region of the high-redshift L – T relation not previously sampled, are compared with existing measurements at low redshift in order to constrain the evolution of the L – T relation. We find the best fit to low-redshift ( z <0.2) cluster data, at T >1 keV, to be L ∝ T 3.15±0.06. Our data are consistent with no evolution in the normalization of the L – T relation up to z ∼0.8. Combining our results with ASCA measurements taken from the literature, we find η =0.19±0.38 (for Ω0=1, with 1 σ errors) where L Bol∝(1+ z ) η T 3.15, or η =0.60±0.38 for Ω0=0.3. This lack of evolution is considered in terms of the entropy-driven evolution of clusters. Further implications for cosmological constraints are also discussed.  相似文献   

7.
8.
9.
10.
The BeppoSAX High Energy Large Area Survey (HELLAS) has surveyed several tens of deg2 of the sky in the     band down to a flux of about     . The source surface density of     at the survey limit corresponds to a resolved fraction of the     X-ray background (XRB) of the order of     per cent. The extrapolation of the HELLAS     towards fainter fluxes with a Euclidean slope is consistent with the first XMM–Newton measurements, in the same energy band, which are a factor of 20 times more sensitive. The source counts in the hardest band so far surveyed by X-ray satellites are used to constrain XRB models. It is shown that in order to reproduce the     counts over the range of fluxes covered by BeppoSAX and XMM–Newton a large fraction of highly absorbed     , luminous     active galactic nuclei is needed. A sizeable number of more heavily obscured, Compton-thick, objects cannot be ruled out but they are not required by the present data. The model predicts an absorption distribution consistent with that found from the hardness ratios analysis of the so far identified HELLAS sources. Interestingly enough, there is evidence of a decoupling between X-ray absorption and optical reddening indicators, especially at high redshifts/luminosities where several broad-line quasars show hardness ratios typical of absorbed power-law models with     .  相似文献   

11.
12.
13.
14.
I use ASCA data to investigate the 2–10 keV X-ray emission of active galactic nuclei (AGN) taken from the ROSAT International X-ray Optical Survey (RIXOS). I find that the integrated spectrum of these faint, soft X-ray-selected AGN in the 2–10 keV band is harder (best-fitting α = 0.8 ± 0.1) than the slope measured with ROSAT between 0.1 and 2 keV, but softer than the 2–10 keV X-ray background, and consistent with the average 2–10 keV spectrum of bright, nearby Seyfert galaxies. With this spectral slope and using measurements of the AGN contribution to the 1–2 keV X-ray background, I estimate that the AGN percentage contribution to the 2–10 keV background is 0.60 +0.19−0.14 times the AGN percentage contribution to the 1–2 keV background. Hence AGN produce between 12 and 32 per cent of the 2–10 keV X-ray background. This is only the contribution from the types of AGN which are found in soft X-ray surveys; a population of absorbed AGN could represent an additional component of the 2–10 keV X-ray background.  相似文献   

15.
16.
We have surveyed 188 ROSAT Position Sensitive Proportional Counter (PSPC) fields for X-ray sources with hard spectra ( α <0.5); such sources must be major contributors to the X-ray background at faint fluxes. In this paper we present optical identifications for 62 of these sources: 28 active galactic nuclei (AGN) which show broad lines in their optical spectra (BLAGN), 13 narrow emission line galaxies (NELGs), five galaxies with no visible emission lines, eight clusters and eight Galactic stars.
The BLAGN, NELGs and galaxies have similar distributions of X-ray flux and spectra. Their ROSAT spectra are consistent with their being AGN obscured by columns of 20.5< log( N H/cm−2)<23 . The hard spectrum BLAGN have a distribution of X-ray to optical ratios which is similar to that found for AGN from soft X-ray surveys (1< α OX<2) . However, a relatively large proportion (15 per cent) of the BLAGN, NELGs and galaxies are radio loud. This could be because the radio jets in these objects produce intrinsically hard X-ray emission, or if their hardness is caused by absorption, it could be because radio-loud objects are more X-ray luminous than radio-quiet objects. The eight hard sources identified as clusters of galaxies are the brightest, and softest group of sources and hence clusters are unlikely to be an important component of the hard, faint population.
We propose that BLAGN are likely to constitute a significant fraction of the faint, hard, 0.5–2 keV population and could be important to reproducing the shape of the X-ray background, because they are the most numerous type of object in our sample (comprising almost half the identified sources), and because all our high redshift ( z >1) identified hard sources have broad lines.  相似文献   

17.
18.
We present optical spectra and near-infrared imaging of a sample of 31 serendipitous X-ray sources detected in the field of Chandra observations of the A 2390 cluster of galaxies. The sources have  0.5–7 keV  fluxes of  (0.6–8)×10-14 erg cm-2 s-1  and lie around the break in the  2–10 keV  source counts. They are therefore typical of sources dominating the X-ray Background in that band. 12 of the 15 targets for which we have optical spectra show emission lines at a range of line luminosities, and half of these show broad lines. These active galaxies and quasars have soft X-ray spectra. Including photometric redshifts and published spectra, we have redshifts for 17 of the sources, ranging from   z ∼0.2  up to   z ∼3  , with a peak between   z =1–2  . 10 of our sources have hard X-ray spectra indicating a spectral slope flatter than that of a typical unabsorbed quasar. Two hard sources that are gravitationally lensed by the foreground cluster are obscured quasars, with intrinsic  2–10 keV  luminosities of  (0.2–3)×1045 erg s-1  , and absorbing columns of   N H>1023 cm-2  . Both of these sources were detected in the mid-infrared by ISOCAM on the Infrared Space Observatory , which when combined with radiative transfer modelling leads to the prediction that the bulk of the reprocessed flux emerges at ∼100 μm.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号