首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. M. Horan 《Solar physics》1971,21(1):188-197
X-ray emission from seventeen X-ray flares was analyzed to obtain electron temperatures and emission measures associated with the source region in the solar corona. The source region was assumed to be isothermal with a Maxwellian electron velocity distribution.Flares which were characterized by a rapid initial X-ray flux increase were found to also have a rapid initial rise in electron temperature and emission measure. Flares which were characterized by a gradual initial X-ray energy flux increase were found to have a less rapid initial rise in electron temperature and emission measure. In all X-ray flares studied the peak temperature chronologically preceded the peak X-ray flux and the peak flux never came after the peak emission measure.Based on a dissertation submitted to The Catholic University of America, Washington, D.C.  相似文献   

2.
《New Astronomy Reviews》1999,43(6-7):467-469
We report the discovery of X-ray emission differences in SNR MSH14-63 based on a ROSAT PSPC observation. The structures of this remnant are different in several energy bands. These images, along with the radial brightness distributions in these energy bands, show the existence of a mechanism in the inner region of the south part which results in a sudden enhancement of the X-ray emission above 1.0 keV.  相似文献   

3.
Data obtained from a proportional counter on OSO-5 are examined to study variations in emission from individual solar active regions within the waveband 0.3–0.9 nm. Flux levels are highly variable, even from the areas having a low mean emission, because increases characteristic of X-ray flares occur most of the time. It is usual to assume that the coronal levels above a plage region are heated by a fairly continuous incident energy flux (perhaps waves), while impulsive effects associated with flares add to this over localised areas. The data given here indicate that the impulsive mechanism is probably the more important in producing the total soft X-ray flux from an active region. There is also reason to believe that many of the small flares observed are not restricted to particularly localised areas. They are of the gradual rise and fall variety which probably have an extended spatial structure. It seems possible that flare heating might account for almost the entire X-ray emission throughout the active region.  相似文献   

4.
We have studied the energetics of two impulsive solar flares of X-ray class X1.7 by assuming the electrons accelerated in several episodes of energy release to be the main source of plasma heating and reached conclusions about their morphology. The time profiles of the flare plasma temperature, emission measure, and their derivatives, and the intensity of nonthermal X-ray emission are compared; images of the X-ray sources and magnetograms of the flare region at key instants of time have been constructed. Based on a spectral analysis of the hard X-ray emission from RHESSI data and GOES observations of the soft X-ray emission, we have estimated the spatially integrated kinetic power of nonthermal electrons and the change in flare-plasma internal energy by taking into account the heat losses through thermal conduction and radiation and determined the parameters needed for thermal balance. We have established that the electrons accelerated at the beginning of the events with a relatively soft spectrum directly heat up the coronal part of the flare loops, with the increase in emission measure and hard X-ray emission from the chromosphere being negligible. The succeeding episodes of electron acceleration with a harder spectrum have virtually no effect on the temperature rise, but they lead to an increase in emission measure and hard X-ray emission from the footpoints of the flare loops.  相似文献   

5.
Radio noise storms show that suprathermal electrons (a few tens of keV) are present in the vicinity of active regions during several hours or even a few days. Where and how these electrons are energized is not yet well known. A flare-like sudden energy release in the active region is in general observed at the onset of noise storms, either as a fully developed flare or, more often, as a soft X-ray brightening without conspicuous H signature. In order to investigate to what extent electrons energized in the active region contribute to the noise-storm emission in the overlying coronal structures, we combine radio imaging (Nançay radioheliograph) with X-ray spectral observations at photon energies of a few keV (GOES) and - for the first time - around 10 keV (WATCH/GRANAT). In two of four studied events the WATCH data show a significant excess of the deka-keV count rate above the expectation from an isothermal fit to the GOES fluxes. Although the electron population producing the deka-keV X-ray emission would be energetic enough to power the simultaneous radio noise storm, the much longer duration of the radio emission requires time-extended particle acceleration. The acceleration probably occurs in the corona overlying the X-ray emitting region, triggered by the processes which give rise to the X-ray brightenings.  相似文献   

6.
We analyze eight XMM-Newton observations of the bright Narrow Line Seyfert 1 galaxy Arakelian 564(Ark 564). These observations, separated bye~6 days, allow us to look for correlations between the simultaneous ultraviolet(UV) emission(from th Optical Monitor) with not only the X-ray flux but also with different X-ray spectral parameters. The X-ray spectra from all the observations are found to be adequately fitted by a double Comptonization model where the soft excess and the hard X-ray power law are represented by thermal Comptonization in a low temperature plasma and hot corona, respectively. Apart from the fluxes of each component, the hard X-ray power law index is found to be variable. These results suggest that the variability is associated with changes in the geometry of the inner region. The UV emission is found to be variable and well correlated with the high energy index while the correlations with the fluxes of each component are found to be weaker. Using viscous timescale arguments we rule out the possibility that the UV variation is due to the fluctuating accretion rate in the outer disk. If the UV variation is driven by X-ray reprocessing, then our results indicate that the strength of the X-ray reprocessing depends more on the geometry of the X-ray producing inner region rather than on the X-ray luminosity alone.  相似文献   

7.
We study the solar event on 27 September 2001 that consisted of three consecutive coronal mass ejections (CMEs) originating from the same active region, which were associated with several periods of radio type II burst emission at decameter–hectometer (DH) wavelengths. Our analysis shows that the first radio burst originated from a low-density environment, formed in the wake of the first, slow CME. The frequency-drift of the burst suggests a low-speed burst driver, or that the shock was not propagating along the large density gradient. There is also evidence of band-splitting within this emission lane. The origin of the first shock remains unclear, as several alternative scenarios exist. The second shock showed separate periods of enhanced radio emission. This shock could have originated from a CME bow shock, caused by the fast and accelerating second or third CME. However, a shock at CME flanks is also possible, as the density depletion caused by the three CMEs would have affected the emission frequencies and hence the radio source heights could have been lower than usual. The last type II burst period showed enhanced emission in a wider bandwidth, which was most probably due to the CME–CME interaction. Only one shock that could reliably be associated with the investigated CMEs was observed to arrive near Earth.  相似文献   

8.
Amongst the sources seen in very high gamma-rays several are associated with Pulsar Wind Nebulae (“TeV plerions”). The study of hard X-ray/soft gamma-ray emission is providing an important insight into the energetic particle population present in these objects. The unpulsed emission from pulsar/pulsar wind nebula systems in the energy range accessible to the INTEGRAL satellite is mainly synchrotron emission from energetic and fast cooling electrons close to their acceleration site. Our analyses of public INTEGRAL data of known TeV plerions detected by ground based Cherenkov telescopes indicate a deeper link between these TeV plerions and INTEGRAL detected pulsar wind nebulae. The newly discovered TeV plerion in the northern wing of the Kookaburra region (G313.3+0.6 powered by the middle aged PSR J1420-6048) is found to have a previously unknown INTEGRAL counterpart which is besides the Vela pulsar the only middle aged pulsar detected with INTEGRAL. We do not find an INTEGRAL counterpart of the TeV plerion associated with the X-ray PWN “Rabbit” G313.3+0.1 which is possibly powered by a young pulsar.  相似文献   

9.
Garaimov  V.I.  Kundu  M.R. 《Solar physics》2002,207(2):355-367
We present the results of an analysis of a flare event of importance M2.8 that occurred at 00:56 UT 28 August 1999. The analysis is based upon observations made with the Nobeyama radioheliograph (NoRH) and polarimeters (NoRP), TRACE, SOHO/MDI, EIT, and Yohkoh/SXT. The images show a very complex flaring region. Pre-flare TRACE and EIT images at 00:24 UT show a small brightening in the region before the flare occurred. The active region in which the flare occurred had evolving magnetic fields, and new magnetic flux seems to have emerged. The X-ray and radio time profiles for this event show a double-peaked structure. The polarimeter data showed that the maximum radio emission (1200 s.f.u.) occurred at 9.4 GHz. At 17 GHz the NoRH images appear to show four different radio sources including the main spot and the main flare loop. Most of the microwave emission seems to originate from the main flare loop. Comparison of BATSE and microwave time profiles at 17 and 34 GHz from the main sunspot source shows that these profiles have similar structures and they coincide with the hard X-ray peaks. The maximum of the flare loop emission was delayed by 10 s relative to the second maximum of the sunspot associated flare emission. Analysis of SXT images during the post-flare phase shows a complex morphology – several intersecting loops and changes in the shape of the main flare loop.  相似文献   

10.
We study the expected X-ray luminosity of stellar merger products several years after merger. The X-ray emission is assumed to result from magnetic activity. The extended envelope of the merger product possesses a large convective region and it is expected to rotate fast. The rotation and convection might give rise to an efficient dynamo operation; therefore we expect strong magnetic activity. Using well-known relations connecting magnetic activity and X-ray luminosity in other types of magnetically active stars, we estimate that the strong X-ray luminosity will start several years after merger, will reach a maximum of L x∼ 3 × 1030 erg s−1, and will slowly decline on a time-scale of ∼100 yr. We predict that X-ray emission from V838 Mon which erupted in 2002 will be detected in 2008 with 20 h of observation.  相似文献   

11.
Strong X-ray and γ–ray flares have been detected in February 2010 from the high synchrotron peaked blazar Mrk 421 (z = 0.031). With the motivation of understanding the physics involved in this flaring activity, we study the variability of the source in X-ray and γ–ray energy bands during the period February 10–23, 2010 (MJD 55237–55250). We use near simultaneous X-ray data collected by MAXI, Swift-XRT and γ–ray data collected by Fermi-LAT and TACTIC along with the optical V-band observations by SPOL at Steward Observatory. We observe that the variation in the one day averaged flux from the source during the flare is characterized by fast rise and slow decay. Besides, the TeV γ–ray flux shows a strong correlation with the X-ray flux, suggesting the former to be an outcome of synchrotron self Compton emission process. To model the observed X-ray and γ–ray light curves, we numerically solve the kinetic equation describing the evolution of particle distribution in the emission region. The injection of particle distribution into the emission region, from the putative acceleration region, is assumed to be a time dependent power law. The synchrotron and synchrotron self Compton emission from the evolving particle distribution in the emission region are used to reproduce the X-ray and γ–ray flares successfully. Our study suggests that the flaring activity of Mrk 421 can be an outcome of an efficient acceleration process associated with the increase in underlying non-thermal particle distribution.  相似文献   

12.
Broadband sensors aboard the Naval Research Laboratory's SOLRAD 11 satellites measured solar emission in the 0.5 to 3 Å, 1 to 8 Å, 8 to 20 Å, 100 to 500 Å, 500 to 800 Å, and 700 to 1030 Å bands between March 1976 and October 1979. Measurements of EUV and soft X-ray emission from a large number of solar flares were obtained. Although solar flare measurements in the soft X-ray bands are continuously made and used as a standard of a flare's geophysical significance, direct measurements of flare EUV emission are quite rare. We present measurements of the X-ray and EUV emission from several flares with special emphasis on the relative EUV response associated with flares in different categories determined by 1 to 8 Å soft X-ray flux. An example of a flare exhibiting an impulsive (nonthermal) phase is included.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 Semptember 1980, Scheveningen, The Netherlands.  相似文献   

13.
PSR J1833−1034 and its associated pulsar wind nebula (PWN) have been investigated in depth through X-ray observations ranging from 0.1 to 200 keV. The low-energy X-ray data from Chandra reveal a complex morphology that is characterized by a bright central plerion, no thermal shell and an extended diffuse halo. The spectral emission from the central plerion softens with radial distance from the pulsar, with the spectral index ranging from  Γ= 1.61  in the central region to  Γ= 2.36  at the edge of the PWN. At higher energy, INTEGRAL detected the source in the 17–200 keV range. The data analysis clearly shows that the main contribution to the spectral emission in the hard X-ray energy range is originated from the PWN, while the pulsar is dominant above 200 keV. Recent High Energy Stereoscopic System (HESS) observations in the high-energy gamma-ray domain show that PSR J1833−1034 is a bright TeV emitter, with a flux corresponding to ∼2 per cent of the Crab in 1–10 TeV range. In addition, the spectral shape in the TeV energy region matches well with that in the hard X-rays observed by INTEGRAL . Based on these findings, we conclude that the emission from the pulsar and its associated PWN can be described in a scenario where hard X-rays are produced through synchrotron light of electrons with Lorentz factor  γ∼ 109  in a magnetic field of ∼10 μG. In this hypothesis, the TeV emission is due to inverse-Compton interaction of the cooled electrons off the cosmic microwave background photons. Search for PSR J1833−1034 X-ray pulsed emission, via RXTE and Swift X-ray observations, resulted in an upper limit that is about 50 per cent.  相似文献   

14.
Hale region 16898 was observed by the Westerbork Synthesis Radio Telescope at 6 cm and by the Ultraviolet Spectrometer and Polarimeter and the X-Ray Spectrometer on the Solar Maximum Mission satellite. Optical pictures of the same active region were taken at Sacramento Peak, Big Bear, and Meudon Observatories. The radio emission mechanisms are identified by comparing radio data with ultraviolet and soft X-ray data. The height of the radio sources and the magnetic field strength at that height are deduced. A radio source above a large sunspot shows a crescent shaped depression of circular polarization and a high brightness temperature. The emission mechanism is identified as gyroresonance at the second and the third harmonic layers and it is found that the second harmonic layer, where the magnetic field strength is 900 G, must be in the corona. An extended loop-like source connecting the leading and the following part of the active region as well as the sources associated with small spots are mainly due to thermal free-free emission by hot and dense plasma which is also observed in ultraviolet and soft X-ray radiation. The calculated radio brightness temperature, using the physical parameters deduced from the ultraviolet and soft X-ray line intensities, agrees with the observed brightness temperature. The height of the low brightness temperature sources above the small spots is 6000 ± 3000 km and that above the large spot is less than 3000 km: the source above the large spot does not show any shift relative to the sunspot due to the projection effect. Very strong radio emission was found which was associated with the merging of a group of small spots into the large sunspot. In the same day, warm ( 106 K) and dense matter was present above the large spot. Evidence for nonthermal emission is presented.  相似文献   

15.
We examine the interpretation of plasma parameters derived by quantitative analysis of solar X-ray photographs obtained through broad band filters. We find some of the recent criticisms of the filter ratio method to be unfounded. Using active region and quiet Sun emission measures derived mostly from spectroscopic observations we find that effective emission measures and temperatures derived from S-054 data by filter ratio analysis are within better than 20% of the total emission measure and average temperature, respectively. The uncertainties associated with filtered flux determination are found to produce an error of about 10% in the derived effective temperature. We thus conclusively demonstrate that parameters derived from S-054 data by filter ratio analysis are representative of the observed active region and quiet Sun material.  相似文献   

16.
It is difficult to detect X-ray emission associated with galaxies in rich clusters, because the X-ray images of the clusters are dominated by the emission from their hot intracluster media (ICM). Only the nearby Virgo cluster provides us with information about the X-ray properties of galaxies in clusters. Here we report on the analysis of a deep ROSAT HRI image of the moderately rich cluster Abell 2634, by which we have been able to detect the X-ray emission from the galaxies in the cluster. The ICM of Abell 2634 is an order of magnitude denser than that of the Virgo cluster, and so this analysis allows us to explore the X-ray properties of individual galaxies in the richest environment yet explored.
By stacking the X-ray images of the galaxies together, we show that the emission from the galaxies appears to be marginally resolved by the HRI. This extent is smaller than for galaxies in poorer environments, and is comparable to the size of the galaxies in optical light. These facts suggest that the detected X-ray emission originates from the stellar populations of the galaxies, rather than from extended hot interstellar media. Support for this hypothesis comes from placing the optical and X-ray luminosities of these galaxies in the LB–LX plane: the galaxies of Abell 2634 lie in the region of this plane where models indicate that all the X-ray emission can be explained by the usual population of X-ray binaries. It is therefore probable that ram pressure stripping has removed the hot gas component from these galaxies.  相似文献   

17.
The origin of the soft X-ray excess emission observed in many type-1 active galactic nuclei (AGN) has been an unresolved problem in X-ray astronomy for over two decades. We develop the model proposed by Gierliński & Done, which models the soft excess with heavily smeared, ionized, absorption, by including the emission that must be associated with this absorption. We show that, rather than hindering the ionized absorption model, the addition of the emission actually helps this model reproduce the soft excess. The emission fills in some of the absorption trough, while preserving the sharp rise at ∼1 keV, allowing the total model to reproduce the soft excess curvature from a considerably wider range of model parameters. We demonstrate that this model is capable of reproducing even the strongest soft X-ray excesses by fitting it to the XMM–Newton EPIC PN spectrum of PG1211+143, with good results. The addition of the emission reduces the column density required to fit these data by a factor of ∼2 and reduces the smearing velocity from ∼0.28c to ∼0.2c. Gierliński & Done suggested a tentative origin for the absorption in the innermost, accelerating, region of an accretion disc wind, and we highlight the advantages of this interpretation in comparison to accretion disc reflection models of the soft excess. Associating this material with a wind off the accretion disc results in several separate problems however, namely, the radial nature, and the massive implied mass-loss rate, of the wind. We propose an origin in a 'failed wind', where the central X-ray source is strong enough to overionize the wind, removing the acceleration through line absorption before the material reaches escape velocity, allowing the material to fall back to the disc at larger radii.  相似文献   

18.
In this study, we present a detailed analysis, based on multiwavelength observations and magnetic field extrapolation, of a radio and X-ray event observed on March 17, 2002. This event was accompanied by a Coronal Mass Ejection (CME) observed by the Large-Angle Spectrometric Coronagraph (LASCO) aboard SOHO. During the main event, the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission observed a hard X-ray emission correlated in time with the development of a type III burst group. The CME development, the hard X-ray emission, and the type III burst group appear to be closely associated. The multifrequency Nançay Radioheliograph (NRH) shows that the type III bursts are produced at a distance from the active region that progressively increases with time. Their emitting sources are distributed along the western edge of the CME. We conclude the type III electron beams propagate in the interface region between the ascending CME and the neighboring open field lines. Due to the development of the CME, this region becomes progressively highly compressed. By measuring, at each frequency, the shift versus time of the type III positions, we estimate that the electron density in this compression region increased roughly by a factor of 10 over a few minutes. Another signature of this compression region is a narrow white light feature interpreted as a coronal shock driven by the CME lateral expansion.  相似文献   

19.
The radio emission during 201 selected X-ray solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zürich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% are they the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.  相似文献   

20.
W Comae has significant variability in multi-wavelengthes, from radio to gamma-ray bands. A bright outburst in optical and X-ray bands was observed in 1998, and most recently, a strong TeV flare was detected by VERITAS in 2008. It is the first TeV intermediate-frequency-peaked BL Lacertae source. I find that both the broadband spectral energy distributions (SEDs) which were quasi-simultaneously obtained during the TeV flare and during the optical/X-ray outburst are well fit by using a single-zone synchrotron + synchrotron-self-Compton model. The satisfactory fitting requires a large beaming factor, i.e., δ~25 and δ~20 for the TeV flare and the optical/X-ray outburst, respectively, suggesting that both the optical/X-ray outburst and the TeV flare are from a relativistic jet. The size of the emission region of the TeV flare is three times larger than that of the optical/X-ray outburst, and the strength of the magnetic field for the TeV flare is~14 times smaller than that of the X-ray/optical outburst, likely indicating that the region of the TeV flare is more distant from the core than that of the X-ray/optical outburst. The inverse Compton component of the TeV flare peaks around 1.3 GeV, but it is around 0 MeV for the X-ray/optical outburst, lower than that for the TeV flare by two orders of magnitude. The model predicts that the optical/X-ray outburst might be accompanied by a strong MeV/GeV emission, but the TeV flare may be not associated with the X-ray/optical outburst. The GeV emission is critical for characterizing the SEDs of the optical/X-ray outburst and the TeV flare. The predicted GeV flux is above the sensitivity of Fermi/LAT, and it could be verified with the observations by Fermi/LAT in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号