首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyze the behavior of the scalar field as dark energy of the Universe in a static world of galaxies and clusters of galaxies. We find the analytical solutions of evolution equations of the density and velocity perturbations of dark matter and dark energy, which interact only gravitationally, along with the perturbations of metric in a static world with background Minkowski metric. It was shown that quintessential and phantom dark energy in the static world of galaxies and clusters of galaxies is gravitationally stable and can only oscillate by the influence of self-gravity. In the gravitational field of dark matter perturbations, it is able to condense monotonically, but the amplitude of density and velocity perturbations on all scales remains small. It was also illustrated that the “accretion” of phantom dark energy in the region of dark matter overdensities causes formation of dark energy underdensities-the regions with negative amplitude of density perturbations of dark energy.  相似文献   

2.
Making robust predictions for the phase-space distribution of dark matter at the solar neighbourhood is vital for dark matter direct-detection experiments. To date, almost all such predictions have been based on simulations that model the dark matter alone. Here, we use three cosmological hydrodynamic simulations of bright, disc-dominated galaxies to include the effects of baryonic matter self-consistently for the first time. We find that the addition of baryonic physics drastically alters the dark matter profile in the vicinity of the solar neighbourhood. A stellar/gas disc, already in place at high redshift, causes merging satellites to be dragged preferentially towards the disc plane where they are torn apart by tides. This results in an accreted dark matter disc that contributes ∼0.25–1.5 times the non-rotating halo density at the solar position. The dark disc, unlike dark matter streams, is an equilibrium structure that must exist in disc galaxies that form in a hierarchical cosmology. Its low rotation lag with respect to the Earth significantly boosts Weakly Interacting Massive Particle (WIMP) capture in the Earth and Sun, boosts the annual modulation signal and leads to distinct variations in the flux as a function of recoil energy that allow the WIMP mass to be determined.  相似文献   

3.
One explanation for the disparity between cold dark matter (CDM) predictions of galaxy numbers and observations could be that there are numerous dark galaxies in the Universe. These galaxies may still contain baryons, but no stars, and may be detectable in the 21-cm line of atomic hydrogen. The results of surveys for such objects, and simulations that do/do not predict their existence, are controversial. In this paper, we use an analytical model of galaxy formation, consistent with CDM, to first show that dark galaxies are certainly a prediction of the model. Secondly, we show that objects like VIRGOHI21, a dark galaxy candidate recently discovered by us, while rare are predicted by the model. Thirdly, we show that previous 'blind' H  i surveys have placed few constraints on the existence of dark galaxies. This is because they have either lacked the sensitivity and/or velocity resolution or have not had the required detailed optical follow up. We look forward to new 21-cm blind surveys [Arecibo Legacy Fast ALFA (ALFALFA) survey and Arecibo Galactic Environments Survey (AGES)] using the Arecibo multibeam instrument which should find large numbers of dark galaxies if they exist.  相似文献   

4.
We present detailed predictions for the properties of Lyα-emitting galaxies in the framework of the Λ cold dark matter cosmology, calculated using the semi-analytical galaxy formation model galform . We explore a model that assumes a top-heavy initial mass function in starbursts and that has previously been shown to explain the sub-millimetre number counts and the luminosity function of Lyman-break galaxies at high redshift. We show that this model, with the simple assumption that a fixed fraction of Lyα photons escape from each galaxy, is remarkably successful at explaining the observed luminosity function of Lyα emitters (LAEs) over the redshift range  3 < z < 6.6  . We also examine the distribution of Lyα equivalent widths and the broad-band continuum magnitudes of emitters, which are in good agreement with the available observations. We look more deeply into the nature of LAEs, presenting predictions for fundamental properties such as the stellar mass and radius of the emitting galaxy and the mass of the host dark matter halo. The model predicts that the clustering of LAEs at high redshifts should be strongly biased relative to the dark matter, in agreement with observational estimates. We also present predictions for the luminosity function of LAEs at   z > 7  , a redshift range that is starting to be be probed by near-infrared surveys and using new instruments such as the Dark Ages Z Lyman Explorer (DAzLE).  相似文献   

5.
There are a number of theoretical and observational hints that large numbers of low-mass galaxies composed entirely of dark matter exist in the field. The theoretical considerations follow from the prediction of cold dark matter theory that there exist many low-mass galaxies for every massive one. The observational considerations follow from the observed paucity of these low-mass galaxies in the field but not in dense clusters of galaxies; this suggests that the lack of small galaxies in the field is due to the inhibition of star formation in the galaxies as opposed to the fact that their small dark matter haloes do not exist. In this work we outline the likely properties of low-mass dark galaxies, and describe observational strategies for finding them, and where in the sky to search. The results are presented as a function of the global properties of dark matter, in particular the presence or absence of a substantial baryonic dark matter component. If the dark matter is purely cold and has a Navarro, Frenk & White density profile, directly detecting dark galaxies will only be feasible with present technology if the galaxy has a maximum velocity dispersion in excess of 70 km s−1, in which case the dark galaxies could strongly lens background objects. This is much higher than the maximum velocity dispersions in most dwarf galaxies. If the dark matter in galaxy haloes has a baryonic component close to the cosmic ratio, the possibility of directly detecting dark galaxies is much more realistic; the optimal method of detection will depend on the nature of the dark matter. A number of more indirect methods are also discussed.  相似文献   

6.
The age of the Universe has been increasingly constrained by different techniques, such as the observations of type Ia supernovae (SNIa) at high redshift or dating the stellar populations of globular clusters. In this paper, we present a complementary approach using the colours of the brightest elliptical galaxies in clusters over a wide redshift range  ( z ≲ 1)  . We put new and independent bounds on the dark energy equation of state parametrized by a constant pressure-to-density ratio   w Q  and by a parameter (ξ) which determines the scaling between the matter and dark energy densities. We find that accurate estimates of the metallicities of the stellar populations in moderate and high-redshift cluster galaxies can pose stringent constraints on the parameters that describe dark energy. Our results are in good agreement with the analysis of dark energy models using SNIa data as a constraint. Accurate estimates of the metallicities of stellar populations in cluster galaxies at   z ≲ 2  will make this approach a powerful complement to studies of cosmological parameters using high-redshift SNIa.  相似文献   

7.
《New Astronomy Reviews》2002,46(12):755-766
An overview is presented of the main properties of dark matter haloes, as we know them from observations, essentially from rotation curves around spiral and dwarf galaxies. Detailed rotation curves are now known for more than a thousand galaxies, revealing that they are not so flat in the outer parts, but rising for late-types, and falling for early-types. A well-established result now is that most bright galaxies are not dominated by dark matter inside their optical disks. Only for dwarfs and LSB (Low Surface Brightness galaxies) dark matter plays a dominant role in the visible regions. The 3D-shape of haloes are investigated through several methods that will be discussed: polar rings, flaring of HI planes, X-ray isophotes. It is not yet possible with rotation curves to know how far haloes extend, but tentatives have been made. It will be shown that the dark matter appears to be coupled to the gas in spirals and dwarfs, suggesting that dark baryons could play a major role in rotation curves. Theories proposing to replace the non-baryonic dark matter by a different dynamical or gravity law, such as MOND, have to take into account the dark baryons, especially since their spatial distribution is likely to be quite different from the visible matter.  相似文献   

8.
赵飞  罗煜  韦成亮 《天文学报》2019,60(4):87-102
为了研究空洞的演化以及暗物质空洞和星系空洞的差别,使用一组高精度的N体模拟数据以及基于此给出的半解析模拟星系数据,在红移2.03到红移0之间取了6个红移的数据,并使用VIDE (Void Identification and Examination toolkit)算法来找空洞,对星系空洞和暗物质空洞的统计性质比如丰度、数目、大小、形状、叠加密度轮廓等演化的比较的结果表明,随着红移的减小,空洞的数目逐渐减少、内部密度逐渐变小、体积逐渐增大、空洞的形状越来越扁.暗物质空洞和星系空洞的数目、平均大小、平均椭率的比值与红移呈线性关系.此外,不论是暗物质空洞还是星系空洞,小的空洞密度比在分布上比大空洞的低,更容易贯通并合,演化效应更明显.另外由于星系总是形成于暗物质密度场的高密度区域,使其不容易示踪暗物质空洞的一些薄弱的墙结构,导致星系空洞提前贯通.而对于已经形成的星系空洞而言,即便是其墙上最薄弱的地方也往往堆积着显著的暗物质,使得星系的位置保持稳定,甚至形成新的星系,从而抑制星系空洞的贯通.整体上暗物质空洞的演化要比星系空洞的演化更加明显.  相似文献   

9.
We have studied a mass model for spiral galaxies in which the dark matter surface density is a scaled version of the observed H  i surface density. Applying this mass model to a sample of 24 spiral galaxies with reliable rotation curves, one obtains good fits for most galaxies. The scaling factors cluster around 7, after correction for the presence of primordial helium. For several cases, however, different, often larger, values are found. For galaxies that cannot be fitted well, the discrepancy occurs at large radii and results from a fairly rapid decline of the H  i surface density in the outermost regions. Because of such imperfections and in view of possible selection effects, it is not possible to conclude here that there is a real coupling between H  i and dark matter in spiral galaxies.  相似文献   

10.
We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.  相似文献   

11.
The CTA will mean a significant increase of the potential for dark matter detection, compared to present-day detectors like MAGIC, HESS and VERITAS. In particular, if – as it might be indicated from early LHC results – the dark matter sector is heavy, perhaps in the TeV mass range, imaging air Cherenkov arrays have a good opportunity to detect γ-rays from dark matter annihilation in the galactic halo, the galactic center, dwarf galaxies, or galaxy clusters. A review of the present situation is given and a few of the “miracles” that may enhance chances for detection in CTA are discussed, such as Sommerfeld enhancement and internal bremsstrahlung radiation. A few templates for dark matter are studied, and the importance of the acceptance of the detector at low energies is pointed out. Finally, the idea of a complement to CTA in the form of a high-altitude, low energy threshold dedicated dark matter array, DMA, is discussed.  相似文献   

12.
We carry out numerical simulations of dissipationless major mergers of elliptical galaxies using initial galaxy models that consist of a dark matter haloes and a stellar bulge with properties consistent with the observed fundamental plane. By varying the density profile of the dark matter haloes [standard Navarro, Frenk & White (NFW) profile versus adiabatically contracted NFW profile], the global stellar to dark matter mass ratio and the orbit of the merging galaxies, we are able to assess the impact of each of these factors on the structure of the merger remnant. Our results indicate that the properties of the remnant bulge depend primarily on the angular momentum and energy of the orbit; for a cosmologically motivated orbit, the effective radius and velocity dispersion of the remnant bulge remain approximately on the fundamental plane. This indicates that the observed properties of elliptical galaxies are consistent with significant growth via late dissipationless mergers. We also find that the dark matter fraction within the effective radius of our remnants increases after the merger, consistent with the hypothesis that the tilt of the fundamental plane from the virial theorem is due to a varying dark matter fraction as a function of galaxy mass.  相似文献   

13.
Dwarf spheroidal (dSph) galaxies are thought to be good candidates for dark matter search due to their high mass-to-light (M/L) ratio. One of the most favored dark matter candidates is the lightest neutralino (neutral χ particle) as predicted in the Minimal Supersymmetric Standard Model (MSSM). In this study, we model the gamma ray emission from dark matter annihilation coming from the nearby dSph galaxies Draco, Segue 1, Ursa Minor and Willman 1, taking into account the contribution from prompt photons and photons produced from inverse Compton scattering off starlight and Cosmic Microwave Background (CMB) photons by the energetic electrons and positrons from dark matter annihilation. We also compute the energy spectra of electrons and positrons from the decay of dark matter annihilation products. Gamma ray spectra and fluxes for both prompt and inverse Compton emission have been calculated for neutralino annihilation over a range of masses and found to be in agreement with the observed data. It has been found that the ultra faint dSph galaxy Segue 1 gives the largest gamma ray flux limits while the lowest gamma ray flux limits has been obtained from Ursa Minor. It is seen that for larger M/L ratio of dwarf galaxies the intensity pattern originating from e + e ? pairs scattering off CMB photons is separated by larger amount from that off the starlight photons for the same neutralino mass. As the e + e ? energy spectra have an exponential cut off at high energies, this may allow to discriminate some dark matter scenarios from other astrophysical sources. Finally, some more detailed study about the effect of inverse Compton scattering may help constrain the dark matter signature in the dSph galaxies.  相似文献   

14.
Recent observations indicate that core-like dark matter structures exist in many galaxies, while numerical simulations reveal a singular dark matter density profile at the center. In this article, I show that if the annihilation of dark matter particles gives invisible sterile neutrinos, the Sommerfeld enhancement of the annihilation cross-section can give a sufficiently large annihilation rate to solve the core-cusp problem. The resultant core density, core radius, and their scaling relation generally agree with recent empirical fits from observations. Also, this model predicts that the resultant core-like structures in dwarf galaxies can be easily observed, but not for large normal galaxies and galaxy clusters.  相似文献   

15.
Dwarf galaxy rotation curves and the core problem of dark matter haloes   总被引:1,自引:0,他引:1  
The standard cold dark matter (CDM) model has recently been challenged by the claim that dwarf galaxies have dark matter haloes with constant-density cores, whereas CDM predicts haloes with steeply cusped density distributions. Consequently, numerous alternative dark matter candidates have recently been proposed. In this paper we scrutinize the observational evidence for the incongruity between dwarf galaxies and the CDM model. To this end, we analyse the rotation curves of 20 late-type dwarf galaxies studied by Swaters. Taking the effects of beam smearing and adiabatic contraction into account, we fit mass models to these rotation curves with dark matter haloes with different cusp slopes, ranging from constant-density cores to r −2 cusps. Even though the effects of beam smearing are small for these data, the uncertainties in the stellar mass-to-light ratio and the limited spatial sampling of the halo's density distribution hamper a unique mass decomposition. Consequently, the rotation curves in our sample cannot be used to discriminate between dark haloes with constant-density cores and r −1 cusps. We show that the dwarf galaxies analysed here are consistent with CDM haloes in a ΛCDM cosmology, and that there is thus no need to abandon the idea that dark matter is cold and collisionless. However, the data are also consistent with any alternative dark matter model that produces dark matter haloes with central cusps less steep than r −1.5. In fact, we argue that based on existing H  i rotation curves alone, at best weak limits can be obtained on cosmological parameters and/or the nature of the dark matter. In order to make progress, rotation curves with higher spatial resolution and independent measurements of the mass-to-light ratio of the disc are required.  相似文献   

16.
Recently, the gravitational polarization of the quantum vacuum was proposed as alternative to the dark matter paradigm. In the present paper we consider four benchmark measurements: the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxies (the Bullet cluster is a famous example). Only some of these phenomena (but not all of them) can (in principle) be explained by the dark matter and the theories of modified gravity. However, we argue that the framework of the gravitational polarization of the quantum vacuum allows the understanding of the totality of these phenomena.  相似文献   

17.
Using high-resolution cosmological N -body simulations, we investigate the survival of dark matter satellites falling into larger haloes. Satellites preserve their identity for some time after merging. We compute their loss of mass, energy and angular momentum as they are dissolved by dynamical friction, tidal forces and collisions with other satellites. We also analyse the evolution of their internal structure. Satellites with less than a few per cent of the mass of the main halo may survive for several billion years, whereas larger satellites rapidly sink into the centre of the main halo potential well and lose their identity. Penetrating encounters between satellites are frequent and may lead to significant mass loss and disruption. Only a minor fraction of cluster mass (10–15 per cent on average) is bound to substructure at most redshifts of interest. We discuss the application of these results to the survival and extent of dark matter haloes associated with galaxies in clusters, and to their interactions. We find that a minor fraction of galaxy-size dark matter haloes are disrupted by redshift z  = 0. The fraction of satellites undergoing close encounters is similar to the observed fraction of interacting or merging galaxies in clusters at moderate redshift.  相似文献   

18.
We develop a method to measure the probability, P ( N;   M ), of finding N galaxies in a dark matter halo of mass M from the theoretically determined clustering properties of dark matter haloes and the observationally measured clustering properties of galaxies. Knowledge of this function and the distribution of the dark matter completely specifies all clustering properties of galaxies on scales larger than the size of dark matter haloes. Furthermore, P ( N;   M ) provides strong constraints on models of galaxy formation, since it depends upon the merger history of dark matter haloes and the galaxy–galaxy merger rate within haloes. We show that measurements from a combination of the Two Micron All Sky Survey and Sloan Digital Sky Survey or Two-degree Field Galaxy Redshift Survey data sets will allow P ( N;   M ) averaged over haloes occupied by bright galaxies to be accurately measured for N =0–2 .  相似文献   

19.
We present the first optimal power spectrum estimation and three-dimensional deprojections for the dark and luminous matter and their cross-correlations. The results are obtained using a new optimal fast estimator, deprojected using minimum variance and Singular Value Decomposition (SVD) techniques. We show the resulting 3D power spectra for dark matter and galaxies, and their covariance for the VIRMOS-DESCART weak lensing shear and galaxy data. The survey is most sensitive to non-linear scales   k NL∼ 1 h Mpc−1  . On these scales, our 3D power spectrum of dark matter is in good agreement with the RCS 3D power spectrum found by Tegmark & Zaldarriaga. Our galaxy power is similar to that found by the 2MASS survey, and larger than that of SDSS, APM and RCS, consistent with the expected difference in galaxy population.
We find an average bias   b = 1.24 ± 0.18  for the I -selected galaxies, and a cross-correlation coefficient   r = 0.75 ± 0.23  . Together with the power spectra, these results optimally encode the entire two point information about dark matter and galaxies, including galaxy–galaxy lensing. We address some of the implications regarding galaxy haloes and mass-to-light ratios. The best-fitting 'halo' parameter   h ≡ r / b = 0.57 ± 0.16  , suggesting that dynamical masses estimated using galaxies systematically underestimate total mass.
Ongoing surveys, such as the Canada–France–Hawaii Telescope Legacy Survey, will significantly improve on the dynamic range, and future photometric redshift catalogues will allow tomography along the same principles.  相似文献   

20.
In this paper, we show that if a single sterile neutrino exists such that     , it can serendipitously solve all outstanding issues of the Modified Newtonian Dynamics. We focus on fitting the angular power spectrum of the cosmic microwave background (CMB) in detail which is possible using a flat Universe with     and the usual baryonic and dark energy components. One cannot match the CMB if there is more than one massive sterile neutrino, nor with three active neutrinos of 2 eV. This model has the same expansion history as the Λ cold dark matter  (ΛCDM)  model and only differs at the galactic scale, where the modified dynamics outperform  ΛCDM  comprehensively. We discuss how an 11 eV sterile neutrino can explain the dark matter of galaxy clusters without influencing individual galaxies and potentially match the matter power spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号