首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Dansgaard-Oeschger and Heinrich events are the most pronounced climatic changes over the last 120,000 years. Although many of their properties were derived from climate reconstructions, the associated physical mechanisms are not yet fully understood. These events are paced by a ~1,500-year periodicity whose origin remains unclear. In a conceptual model approach, we show that this millennial variability can originate from rectification of an external (solar) forcing, and suggest that the thermohaline circulation, through a threshold response, could be the rectifier. We argue that internal threshold response of the thermohaline circulation (THC) to solar forcing is more likely to produce the observed DO cycles than amplification of weak direct ~1,500-year forcing of unknown origin, by THC. One consequence of our concept is that the millennial variability is viewed as a derived mode without physical processes on its characteristic time scale. Rather, the mode results from the linear representation in the Fourier space of nonlinearly transformed fundamental modes.  相似文献   

2.
气候变化对人体健康影响的综合指标探讨   总被引:16,自引:3,他引:13  
气候变化,即气温、湿度、气压、风、太阳辐射、大气化学物质等各种气候因子的变化, 皆能引起人体生理和心理的反应。综合考虑各个气候因子的影响程度、变化机理,得出一种能反映气候的变化与人体健康之间的关系综合指标,这对于气候和环境的变化对人类健康影响的分析研究有重要意义。    相似文献   

3.
Part Ⅱ of this study detects the dominant decadal-centennial timescales in four SST indices up to the 2010/2011 winter and tries to relate them to the observed 11-yr and 88-yr solar activity with the sunspot number up to Solar Cycle 24.To explore plausible solar origins of the observed decadal-centennial timescales in the SSTs and climate variability in general,we design a simple one-dimensional dynamical system forced by an annual cycle modulated by a small-amplitude single-or multi-scale "solar activity." Results suggest that nonlinear harmonic and subharmonic resonance of the system to the forcing and period-doubling bifurcations are responsible for the dominant timescales in the system,including the 60-yr timescale that dominates the Atlantic Multidecadal Oscillation.The dominant timescales in the forced system depend on the system’s parameter setting.Scale enhancement among the dominant response timescales may result in dramatic amplifications over a few decades and extreme values of the time series on various timescales.Three possible energy sources for such amplifications and extremes are proposed.Dynamical model results suggest that solar activity may play an important yet not well recognized role in the observed decadal-centennial climate variability.The atmospheric dynamical amplifying mechanism shown in Part Ⅰ and the nonlinear resonant and bifurcation mechanisms shown in Part Ⅱ help us to understand the solar source of the multi-scale climate change in the 20th century and the fact that different solar influenced dominant timescales for recurrent climate extremes for a given region or a parameter setting.Part Ⅱ also indicates that solar influences on climate cannot be linearly compared with non-cyclic or sporadic thermal forcings because they cannot exert their influences on climate in the same way as the sun does.  相似文献   

4.
Much work has gone into deciphering the causes of the large scale glacial/interglacial variations in the climate system over the last 900 000 years. While variations on the 41 thousand year (ky) and 23 ky time scales seem to be linearly linked to the variations in the distribution of solar radiation at the top of the atmosphere, Milankovitch solar radiation variations, the causes of the dominant 100 ky cycle in the geologic record are still unknown. One of the aspects of this cycle that is not well understood is how large scale ice sheet growth is initiated. Here we describe the mechanisms by which large scale ice sheet growth may have been initiated by the changes in the seasonal and latitudinal distribution of solar radiation over the past 160 ky. This is done through the use of a coupled energy balance climate-thermodynamic sea ice model that includes a hydrologic cycle which computes precipitation, and a land surface energy balance which determines the net accumulation of snow and ice. Results indicate that the initiation of ice sheet growth is possible during times of extremely low summer solstice solar radiation as a result of a large decrease in ablation during the critical melt season.  相似文献   

5.
1616-1911年河南省异常洪涝灾害的时空特征及其成因   总被引:1,自引:0,他引:1  
通过分类和整理1616-1911年河南省洪涝灾害记录,建立了洪涝灾害等级序列。采用Morlet小波变换、DBSCAN空间聚类等方法研究了河南异常洪涝灾害时空分异规律。探讨了洪涝发生对东亚夏季风和太阳活动变化的响应。结果表明:河南省洪涝灾害的发生存在80 a、30 a、20 a、9 a 4个主周期。在不同冷暖时期,北部地区洪涝灾害强度大于南部地区,且气候冷期洪涝强度和发生区域明显大于气候暖期,这除了与降水分布有关外,可能还与水域分布有关。河南南、北部洪涝强度对东亚夏季风强度的响应存在较大的差异,在东亚夏季风强年,季风系统位置偏北,易引起北部地区多洪涝;在东亚夏季风弱年,季风系统位置偏南,易引起南部地区多洪涝。不同时间尺度上二者相关性有显著差异,在100 a及以下时间尺度上,东亚夏季风对河南南部的洪涝影响显著;在200 a时间尺度上,东亚夏季风对河南北部的洪涝影响更显著。洪涝灾害易出现在太阳黑子数极值年及其附近,出现在极大值M年的频率高于极小值m年。河南北部的洪涝在各种不同时间尺度上对太阳黑子周期长度(SCL)的变化均有显著响应,河南南部的洪涝只在100 a尺度上对SCL的变化有显著响应,即当SCL变长(太阳活动减弱)时,有利于河南北部洪涝的少发;反之有利于洪涝的多发。河南省洪涝的变化可能是太阳活动与东亚夏季风共同作用的结果。进一步揭示历史洪涝发生规律及其成因对于正确预估未来旱涝趋势具有重要意义。  相似文献   

6.
陈文  周群 《大气科学进展》2012,29(2):217-226
The modulation of the relationship between the Arctic Oscillation (AO) and the East Asian winter climate by the 11-year solar cycle was investigated.During winters with high solar activity (HS),robust ...  相似文献   

7.
Uncertainty in the response of the global carbon cycle to anthropogenic emissions plays a key role in assessments of potential future climate change and response strategies. We investigate how fast this uncertainty might change as additional data on the global carbon budget becomes available over the twenty-first century. Using a simple global carbon cycle model and focusing on both parameter and structural uncertainty in the terrestrial sink, we find that additional global data leads to substantial learning (i.e., changes in uncertainty) under some conditions but not others. If the model structure is assumed known and only parameter uncertainty is considered, learning is rather limited if observational errors in the data or the magnitude of unexplained natural variability are not reduced. Learning about parameter values can be substantial, however, when errors in data or unexplained variability are reduced. We also find that, on the one hand, uncertainty in the model structure has a much bigger impact on uncertainty in projections of future atmospheric composition than does parameter uncertainty. But on the other, it is also possible to learn more about the model structure than the parameter values, even from global budget data that does not improve over time in terms of its associated errors. As an example, we illustrate how one standard model structure, if incorrect, could become inconsistent with global budget data within 40 years. The rate of learning in this analysis is affected by the choice of a relatively simple carbon cycle model, the use of observations only of global emissions and atmospheric concentration, and the assumption of perfect autocorrelation in observational errors and variability. Future work could usefully improve the approach in each of these areas.  相似文献   

8.
Stochastic modelling provides a tool for exploring the full implications of the statistical behavior of historical records and can be used to predict the changing probabilities that events of various magnitudes will occur for different climatic change scenarios. Two simulation models are presented, one for daily air temperature, and the other for daily precipitation. The simulation procedures are: (1) extract salient parameter values from historical records; (2) simulate long sequences of data using the stochastic models, with or without a climatic change scenario as provided by a general circulation model; and (3) using the simulated data as inputs, derive the probability distributions of other variables based on known deterministic or probabilistic relationships between the input and the predicted variables.Given a doubling of carbon dioxide concentration in the atmosphere, the climatic models produce varying degrees of temperature and precipitation changes. Examples of application, including the derivation of snowfall and riverice data using simulated temperature and precipitation, illustrate that stochastic modelling offers a suitable approach to quantify the possible hydrologic impacts of climatic change.  相似文献   

9.
This study assesses the possible impact of climatic change on Saudi Arabia's agriculture and water supplies using climatic change scenarios from GCMs (General Circulation Models) and related research. The resulting assessment indicates that an increase in temperature and decrease in precipitation could have a major negative impact on agriculture and water supplies in Saudi Arabia. To find signs of climatic change in Saudi Arabia a preliminaryassessment of systematic changes in temperature and precipitation was made, based on the records of four Saudi weather stations. The analysis of this data, which dates back to 1961, shows no discernable signs of climatic change during the study period. Such data is, however, limited both spatially and temporally and cannot provide conclusive evidence to confirm climatic changes projected by GCMs. Nevertheless, in the light of recent climatic conditions and rapid population growth, Saudi decision-makers are urged to adopt a `no regret' policy. Ideally, such a policy would include measures to avoid future environmental or socioeconomic problems that may occur in the event of significant climatic change.  相似文献   

10.
采用1979—2013年6—8月欧洲中期数值预报中心ERA-Interim逐月再分析资料和2004—2010年6—8月美国国家大气和海洋管理局太阳光谱辐照度资料,利用北京气候中心大气辐射模式,计算了北半球平流层夏季臭氧加热率(Ozone Heating Rate,OHR)和净加热率(Net Heating Rate,NHR),分析了太阳准11 a变化中太阳活动强年与弱年纬向平均OHR(NHR)的差异,并讨论了差异形成的原因。结果表明:太阳活动强年比弱年的紫外辐射明显要强,导致OHR、NHR整层增强,且随高度增加而增加;臭氧浓度在平流层下层较小,在平流层上层较大,该变化导致OHR、NHR有类似的变化型,且稍向高处偏移;OHR、NHR在平流层上层的变化,由紫外辐射和臭氧共同作用,其他地区均为臭氧起主要作用。  相似文献   

11.
A simultaneous glaciochemical study of methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4 -) has been conducted on the Antarctic plateau (South Pole, Vostok) and in more coastal regions. The objective was to investigate marine sulfur emissions in very remote areas. Firstly, our data suggest that MSA and nss-SO4 present in antarctic ice are mainly marine in origin and that DMS emissions have been significantly modulated by short term (eg. El Nino Southern Oscillation events) as well as long term climatic changes in the past. Secondly, our study of spatial variations of these two sulfur species seems to indicate that the atmosphere of coastal antarctic regions are mainly supplied by local DMS emissions whereas the atmosphere of the high plateau is also influenced by DMS emissions from more temperate marine latitudes. Thirdly, our study of the partitioning between MSA and nss-SO4 suggest that the temperature could have been an important parameter controlling the final composition of the high southern latitude atmosphere over the last climatic cycle; colder temperature favoring the formation of MSA. However, our data also support a possible role played by changes in the transport pattern of marine air to the high antarctic plateau.  相似文献   

12.
The technique of expanding meteorological fields on eigenvectors of the field covariation matrix is popular. In this paper, we propose for the first time to use a mathematically similar technique to solve the main problem of dendrochronology: classifying variations in tree-ring records as either age- and microenvironment-dependent or climate-induced. Applying this technique to a sample of very long-lived Qilian junipers (Sabina przewalskii Kom.) from the Dulan region in western China, we demonstrate that the ring-width variations projected on the first eigenvector are age-dependent, but those projected on several of the first subsequent vectors are mainly climate-induced. In particular, the second and third projections capture multi-centennial climatic variations, and the variations projected on the fourth through seventh eigenvectors show periodic variations that are probably induced by the 178-year solar cycle. The projections on the smallest eigenvectors seem to be negligible.  相似文献   

13.
Sensitivity experiments are conducted to test the influence of poorly known model parameters on the simulation of the Greenland ice sheet by means of a three dimensional numerical model including the mechanical and thermal processes within the ice. Two types of experiments are performed: steady-state climatic conditions and simulations over the last climatic cycle with a climatic forcing derived from the GRIP record. The experiments show that the maximum altitude of the ice sheet depends on the ice flow parameters (deformation and sliding law coefficients, geothermal flux) and that it is low when the ice flow is fast. On the other hand, the maximum altitude is not sensitive to the ablation strength and consequently during the climatic cycle it is driven by changes in accumulation rate. The ice sheet extension shows the opposite sensitivity: it is barely affected by ice flow velocity and the ice covered area is smaller for large ablation coefficients. For colder climates, when there is no ablation, the ice sheet extension depends on the sea level. An interesting result is that the variations with time of the altitude at the ice divide (Summit) do not depend on the parameters we tested. The present modelled ice sheets resulting from the climatic cycle experiments are compared with the present measured ice sheet in order to find the set of parameters that gives the best fit between modelled and measured geometry. It seems that, compared to the parameter set most commonly used, higher ablation rate coefficents must be used. Received: 19 September 1995 / Accepted: 30 May 1996  相似文献   

14.
Tropical rain forests are dynamic and continually regenerating by growth of seedlings up from the forest floor into canopy gaps that form on a cycle of usually a century of more in length. Changes in seedling establishment, survival, and release in gaps could thus change canopy species composition for a long time. Of likely climatic changes, evidence is presented that cyclone occurrence and increased rainfall seasonality could have important effects on seedling ecology. These forests and their species have lived through big Pleistocene and Holocene climatic changes, but today they are fragmented by human impact and so have less resilience to future climatic change. Management to accommodate climatic change should aim to reduce fragmentation and also canopy opening during logging operations. These are the same practices as advocated for biodiversity conservation. Tropical seasonal forests are also likely to be altered by expected climatic change, and also mainly at their regeneration stage.  相似文献   

15.
在全球气候变暖背景下,地面接收太阳辐射总量发生改变,探讨自然和人为因素对其影响成为热点。利用线性趋势分析、M-K突变检验和小波分析等方法,分析了1961-2009年大同市地面接收太阳辐射的变化特征,验证地面接收太阳辐射的突变年份和周期变化及未来变化趋势,探讨太阳辐射与相关气象要素的关系。结果表明:近49 a大同市地面接收太阳辐射年平均值为5617.28 MJ/m2,整体呈现明显下降趋势,但2000年后又缓慢上升;大同市地面接收太阳总辐射在1975年发生突变;太阳总辐射的振荡周期为9a,现正处于太阳辐射偏高年份;日照时数逐年递减,地面接收太阳辐射减少,二者呈现显著正相关;降水量在波动中缓慢减少,而地面接收太阳辐射总量减少,二者呈现一定正相关;云量变化逐年减少,但与地面接收太阳辐射相关性不明显,气候的自然因素变化与地面接收太阳辐射的相关性较小。  相似文献   

16.
The question of whether and to what extent global warming may be changing tropical cyclone (TC) activity is of great interest to decision makers. The presence of a possible climate change signal in TC activity is difficult to detect because interannual variability necessitates analysis over longer time periods than available data allow. Projections of future TC activity are hindered by computational limitations and uncertainties about changes in regional climate, large scale patterns, and TC response. This review discusses the state of the field in terms of theory, modeling studies and data. While Atlantic TCs have recently become more intense, evidence for changes in other basins is not persuasive, and changes in the Atlantic cannot be clearly attributed to either natural variability or climate change. However, whatever the actual role of climatic change, these concerns have opened a “policy window” that, if used appropriately, could lead to improved protection against TCs.  相似文献   

17.
作为取之不尽的清洁能源,太阳能和风能将是未来潜力最大的可再生能源,是解决全球变暖、能源短缺、环境恶化等问题的有效途径。然而太阳能和风能的能量密度偏小,大规模建设太阳能和风能发电场将改变大面积的地表属性,有可能通过陆气相互作用过程,改变局地和区域气候,甚至有可能通过遥相关过程,产生更大的气候影响。本文利用RegCM4.5区域数值模式,模拟了在我国西北干旱和半干旱区域建设太阳能和风力发电场的气候效应,分析表明:(1)在西北地区大规模建立太阳能和风能发电场将导致局地地面净短波辐射增加,地表感热通量升高,近地面气温升高,增加新疆西部地区、河西走廊地区和我国黄淮等地的降水量,而华北部分地区降水减少。(2)地表反照率对气候的影响大于地表粗糙度对气候的影响,因此太阳能利用导致的气候效应大于风能利用的影响。(3)反照率改变导致低层形成气旋性环流,我国中部地区出现南风异常,西北地区产生异常东风;在高层形成反气旋环流,可以影响我国大部分地区。(4)当只在西北地区20%的面积上建立太阳能和风能发电场时,局地近地面气温不会产生明显的改变,河西走廊地区的降水稍有增加,环流的改变较弱,基本不会有显著的气候影响。  相似文献   

18.
Among the key problems associated with the study of climate variability and its evolution are identification of the factors responsible for observed changes and quantification of their effects. Here, correlation and regression analysis are employed to detect the imprints of selected natural forcings (solar and volcanic activity) and anthropogenic influences (amounts of greenhouse gases—GHGs—and atmospheric aerosols), as well as prominent climatic oscillations (Southern Oscillation—SO, North Atlantic Oscillation—NAO, Atlantic Multidecadal Oscillation—AMO) in the Czech annual and monthly temperature and precipitation series for the 1866–2010 period. We show that the long-term evolution of Czech temperature change is dominated by the influence of an increasing concentration of anthropogenic GHGs (explaining most of the observed warming), combined with substantially lower, and generally statistically insignificant, contributions from the sulphate aerosols (mild cooling) and variations in solar activity (mild warming), but with no distinct imprint from major volcanic eruptions. A significant portion of the observed short-term temperature variability can be linked to the influence of NAO. The contributions from SO and AMO are substantially weaker in magnitude. Aside from NAO, no major influence from the explanatory variables was found in the precipitation series. Nonlinear forms of regression were used to test for nonlinear interactions between the predictors and temperature/precipitation; the nonlinearities disclosed were, however, very weak, or not detectable at all. In addition to the outcomes of the attribution analysis for the Czech series, results for European and global land temperatures are also shown and discussed.  相似文献   

19.
本文在全海洋地球的假定下,建立了一个包括太阳辐射、海面温度等季节变化的理想动力气候模式。模拟结果指出:平衡态及其对外参数敏感性的季节变化很大,而且都是夏季比其它季节大得多;四个季节敏感性的平均值也比年平均模式的敏感性大,这可能主要是太阳辐射季节变化引起的。另外,当太阳常数或二氧化碳浓度减小至一定值时,会出现分岔,若继续减小到分岔点以下,则会发生气候灾变—"深冻"。分岔点上外参数的值在夏季要比其它三个季节大得多。以上结果表明物理过程的季节变化在长期气候变化的研究中是不可忽视的。   相似文献   

20.
General circulation models indicate substantial CO2 warming in high latitudes. In these regions, which include the boreal coniferous forests, the activity of ecosystems is largely controlled by temperature. The effective temperature sum (degree-days) is used in this study for describing the regional variability in the productivity of boreal ecosystems. Although the concept is simple, it takes into account two basic factors: the length of the growing season and the day-to-day level of activity of the ecosystem. This study examines which areas in the boreal coniferous forests would be most sensitive to a possible climatic warming. The data used in the study are for Finland.A regression is estimated between regional forest growth rate and effective temperature sum. A climatic warming is assumed and the corresponding growth response is calculated, using the regression, for northern and southern areas, and for maritime and continental areas. The response is expressed in terms of (i) absolute increase in growth (grams per m2 per year) and (ii) relative increase in growth. The results indicate that a given climatic warming would yield the greatest absolute increase in growth in warm (i.e. southern) and maritime parts of the biome. In terms of the relative growth response the sensitivity would increase northward and toward maritime areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号