首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
BDS载波相位历元间差分测速方法研究   总被引:2,自引:1,他引:1  
闫勇伟  叶世榕  夏敬潮 《测绘科学》2016,41(7):193-196,210
针对载波相位历元间差分测速前后历元选取不同广播星历计算时,卫星钟差跳变导致测速结果错误突变的问题,提出前后历元仍采用相同的广播星历来计算卫星位置和钟差的改进方法。用北斗实测数据验证了方法的正确性,并评估了北斗测速的精度。实验结果表明:静态条件下,北斗载波相位历元间差分测速精度可达mm/s级;动态条件下,采样率1Hz,测速结果与高精度组合导航测速结果符合精度为cm/s级;并且测速精度与物体的动态条件(如加速度)有一定的相关性。  相似文献   

2.
针对在导航实践中低成本MEMS使用传统紧耦合方法计算精度受到限制的问题,提出了一种采用载波相位平滑伪距GNSS PPP/INS紧耦合的算法。实验表明,使用相位平滑伪距的GNSS PPP/INS紧耦合方法后低精度的MEMS和GPS组合位置精度为dm级,速度精度为cm/s甚至mm/s,比传统C/A码紧耦合定位精度高,有较好的收敛性;其次当增加相位平滑的历元数后精度也相应提高。当出现GPS信号中断时,该方法能够加速中断以后滤波收敛的速度,将导航精度控制在中高精度惯导作业要求范围内。该方法节约了导航作业的设备成本,具有一定实际意义。  相似文献   

3.
详细推导了卫星非圆轨道改正的计算公式,给出高精度测速顾及该项误差的处理策略.采用全球均匀分布的12个国际GNSS服务(IGS)测站的多普勒和载波相位观测数据,仿动态评估了该项误差对测速精度的影响.结果表明:基于历元间载波相位差分的测速方法,改正后东、北、天顶方向分别提高8%、9%和10%,三维测速精度从9.9 mm/s改正到8.9 mm/s;基于原始多普勒的测速方法,东、北方向与载波相位差分方法的改正数值基本一致,天顶方向约是载波相位差分方法的改正数值的一半.   相似文献   

4.
利用GPS和数字滤波技术确定航空重力测量中的垂直加速度   总被引:6,自引:2,他引:4  
孙中苗  石磐  夏哲仁  肖云 《测绘学报》2004,33(2):110-115
航空重力测量数据主要含有两类扰动加速度,一是可用解析式表示的有规则影响,如厄特弗斯改正,另一类是与载体非规则运动有关的非规则影响,主要指垂直扰动加速度.通常有规则影响能精确求出,困难在于精确确定非规则的垂直加速度.目前常用GPS和数字滤波技术相结合来确定垂直加速度.本文概述了这种方法的基本原理,讨论了航空重力测量中有限冲激响应(FIR)低通滤波器设计参数的确定,并设计了实用的FIR低通滤波器,实测数据计算结果表明,利用该滤波器确定垂直加速度的精度为±1×10-5~2×10-5 m/s2.  相似文献   

5.
针对高动态环境下普通GPS接收机跟踪环路容易失锁的问题,考虑到锁频环动态性能好、锁相环跟踪精度高的特点,实现了二阶锁频环辅助三阶锁相环的载波跟踪环(FPLL)。根据FPLL结构原理和误差分析理论,提出了一种FPLL环路的码相位和载波相位精度分析方法。借助GPS软件接收机平台,在Matlab环境下仿真实现了FPLL载波跟踪环,并利用Spirent GSS7700仿真器采集高动态GPS模拟信号对FPLL环路进行了测试。测试结果和精度分析表明,在导航信号的载噪比为40dB-Hz,加速度为26g,加加速度为9g/s的条件下,该高动态跟踪环路能够达到码相位1.31m(1σ),载波相位为4.24×10-3 m/s(1σ)的跟踪精度。  相似文献   

6.
利用泊松积分法和点质量法对澳大利亚West Arnhem Land区域的航空重力测量数据进行了精度评估,两种方法得到精度结果基本一致,评估结果表明GT-1A测量系统2′分辨率数据的测量精度优于3×10-5 m/s2,5′分辨率数据的测量精度优于2×10-5 m/s2。利用交叉点平差和泊松积分法、点质量法对渤海区域的航空重力测量进行了内部交叉点平差和外部精度评估,结果表明,内部评估精度与外部评估精度存在一定的差异,以外部评估为准则,CHAGS测量系统在渤海区域5′分辨率的航空重力数据精度优于3.5×10-5 m/s2。综合国内外试验情况分析得到,在近海区域,航空重力数据的分辨率和精度受测量仪器的性能而不同,整体上对于5′分辨率数据而言,可以达到或优于3×10-5 m/s2的精度。  相似文献   

7.
垂直加速度的精确确定是航空重力测量中的关键问题之一。本文讨论了利用GPS相位加速度确定运动载体加速度的基本原理,估计了这一方法可以达到的精度,为检验该方法的可靠性和实用性,我们做了模拟实验,数据来源于一次车载GPS测量试验。数据处理中使用了自行研制的VAES软件。数据处理结果表明,该方法确定的载体加速度,其精度可以达到1-2mGal。  相似文献   

8.
随着北斗卫星导航系统(BeiDou navigation satellite system,BDS)的建设与运行,低轨卫星开始搭载GPS/BDS双系统接收机以实现卫星轨道确定.利用风云三号C(FengYun-3C,FY3C)卫星星载GPS/BDS双频伪距与载波相位观测数据,设置4种仿真试验方案,分别进行星载GPS/BDS在轨实时定轨数据处理,重点进行BDS观测数据对伪距实时定轨和载波相位实时定轨的精度影响分析和算法耗时分析.结果表明,采用伪距观测值,可获得1.0m的位置精度和1.0 mm/s的速度精度;采用载波相位观测值,可获得0.3 m的位置精度和0.3 mm/s的速度精度,且引入BDS观测值后,伪距实时定轨精度降低,相位实时定轨精度有所改善.  相似文献   

9.
基于载波相位历元间差分测速方法,建立了全球卫星导航系统(global navigation satellite system, GNSS)单点测速的数学模型,分析了其误差源,并结合实测数据对多GNSS系统各频点及其无电离层组合、不同系统组合的测速精度进行了对比分析。实验结果表明:不同系统不同频点的测速精度有所差异,BDS(BeiDou navigation satellite system)的B1I、B1C、B3I、B2a频点和Galileo(Galileo positioning system)的E1、E5a、E6、E5b、E5频点的测速精度相当,水平方向优于1.5 mm/s,高程方向优于3 mm/s;BDS的B2I和GPS的L1、L2、L5频点的测速精度相当,水平方向在1.5~2 mm/s,高程方向在3~4mm/s;GLONASS(globalnavigationsatellitesystem)的G1、G2频点测速精度最差,水平方向在3~4 mm/s,高程方向在5~5.5 mm/s;双频无电离层组合由于放大了观测值噪声,其测速精度低于单频。此外,多GNSS组合增加了可见卫星数,降低...  相似文献   

10.
重力卫星搭载的加速度计用于测量非保守力。加速度计的偏差和标度因数在空间随环境变化而缓慢变化,需要实施外部标定,以方便正确应用于数据处理。很多文献研究了动力学标定法、定轨标定方法、能量标定法等,在快速性、高精度性等方面有待提高。本文提出了加速度标定方法,建立数学模型,用于重力卫星的加速度计标定。结果表明,该方法是一种有效的标定方法,在目前的数据条件下,其标校达到10-8—10-9 m/s2水平,标校效果X方向参数最优,Z轴次之,Y轴最差。加速度标校法受到先验地球重力场模型的影响,需要采用迭代方法,逐步逼近真实的加速度计参数。如果提高GNSS轨高产品采样率,可提高总加速度计算精度,从而提高加速度计的定标精度。加速度标定方法是一种有效、快速、精度较高的标定方法,提供精确的标定参数,可以在重力卫星数据处理中使用。  相似文献   

11.
EVA: GPS-based extended velocity and acceleration determination   总被引:1,自引:0,他引:1  
In this work, a new GPS carrier phase-based velocity and acceleration determination method is presented that extends the effective range of previous techniques. The method is named ‘EVA’, and may find applications in fields such as airborne gravimetry when rough terrain or water bodies make difficult or impractical to set up nearby GPS reference receivers. The EVA method is similar to methods such as Kennedy (Precise acceleration determination from carrier phase measurements. In: Proceedings of the 15th international technical meeting of the satellite division of the Institute of Navigation. ION GPS 2002, Portland pp 962–972, 2002b) since it uses L1 carrier phase observables for velocity and acceleration determination. However, it introduces a wide network of stations and it is independent of precise clock information because it estimates satellite clock drifts and drift rates ‘on-the-fly’, requiring only orbit data of sufficient quality. Moreover, with EVA the solution rate is only limited by data rate, and not by the available precise satellite clocks data rate. The results obtained are more robust for long baselines than the results obtained with the reference Kennedy method. An advantage of being independent of precise clock information is that, beside IGS Final products, also the Rapid, Ultra-Rapid (observed) and Ultra-Rapid (predicted) products may be used. Moreover, the EVA technique may also use the undifferenced ionosphere-free carrier phase combination (LC), overcoming baseline limitations in cases where ionosphere gradients may be an issue and very low biases are required. During the development of this work, some problems were found in the velocity estimation process of the Kennedy method. The sources of the problems were identified, and an improved version of the Kennedy method was used for this research work. An experiment was performed using a light aircraft flying over the Pyrenees, showing that both EVA and the improved Kennedy methods are able to cope with the dynamics of mountainous flight. A RTK-derived solution was also generated, and when comparing the three methods to a known zero-velocity reference the results yielded similar performance. The EVA and the improved-Kennedy methods outperformed the RTK solutions, and the EVA method provided the best results in this experiment. Finally, both the improved version of the Kennedy method and the EVA method were applied to a network in equatorial South America with baselines of more than 1,770 km, and during local noon. Under this tough scenario, the EVA method showed a clear advantage for all components of velocity and acceleration, yielding better and more robust results.  相似文献   

12.
飞机运动加速度的测量精度是制约航空重力测量技术发展的主要障碍之一。相较于传统动态差分GPS(differential GPS,DGPS)技术,所提方法采用单站测量模式,无需布设地面基准站。首先通过相位历元间差分解得高精度历元间位移序列,然后结合泰勒一阶中心差分获得载体加速度,重点分析了卫星轨道和卫星钟差对加速度估计的影响,结果表明,不同卫星轨道产品对加速度估计影响较小,而卫星钟差采样率对加速度估计的影响很大。结合中国陕西省境内的GT-2A航空重力测量系统飞行实测数据,利用单站法解算的加速度联合重力和姿态数据解算重力扰动结果与DGPS解算的重力扰动符合较好,当滤波长度为100 s时,两者互差优于1.0 mGal。重力扰动交叉点不符值网平差后,均方根(root mean square,RMS)为1.13 mGal。与地面重力实测值比较的结果表明,所提方法与DGPS方法在精度上基本一致,说明单站法标量航空重力测量是可行的。  相似文献   

13.
Accurate estimates of the velocity and acceleration of a platform are often needed in high dynamic positioning, airborne gravimetry, and geophysics. In turn, differentiation of GPS signals is a crucial process for obtaining these estimates. It is important in the measurement domain where, for example, the phase measurements are used along with their instantaneous derivative (Doppler) to estimate position and velocity. It is also important in postprocessing, where acceleration is usually estimated by differentiating estimates of position and velocity. Various methods of differentiating a signal can have very different effects on the resulting derivative, and their suitability varies from situation to situation. These comments set the stage for the investigations in this article. The objective is twofold: (1) to carry out a comprehensive study of possible differentiation methods, characterizing each in the frequency domain; and (2) to use real data to demonstrate each of these methods in both of the measurement and position domains, in conditions of variable, high, or unknown dynamics. Examples are given using real GPS data in both the measurement domain and in the position and velocity domain. The appropriate differentiator is used in several cases of varying dynamics to derive a Doppler signal from carrier phase measurements (rather than using the raw Doppler generated by the receiver). In the statistic case, it is seen that the accuracy of velocity estimates can be improved from 4.0 mm/s to 0.7 mm/s by using the correct filter. In conditions of medium dynamics experienced in an airborne gravity survey, it is demonstrated that accelerations as the 2–4 mGal level (1 mGal = 0.00001 m/s2) can be obtained at the required filtering periods. Finally, a precision motion table is used to show that when using the correct filter, velocity estimates under high dynamics can be improved by an order of magnitude to 27.0 mm/s. ? 1999 John Wiley & Sons, Inc.  相似文献   

14.
Since the Selective Availability was turned off, the velocity and acceleration can be determined accurately with a single GPS receiver using raw Doppler measurements. The carrier-phase-derived Doppler measurements are normally used to determine velocity and acceleration when there is no direct output of the raw Doppler observations in GPS receivers. Due to GPS receiver clock drifts, however, a GPS receiver clock jump occurs when the GPS receiver clock resets itself (typically with 1 ms increment/decrement) to synchronize with the GPS time. The clock jump affects the corresponding relationship between measurements and their time tags, which results in non-equidistant measurement sampling in time or incorrect time tags. This in turn affects velocity and acceleration determined for a GPS receiver by the conventional method which needs equidistant carrier phases to construct the derived Doppler measurements. To overcome this problem, an improved method that takes into account, GPS receiver clock jumps are devised to generate non-equidistant-derived Doppler observations based on non-equidistant carrier phases. Test results for static and kinematic receivers, which are obtained by using the conventional method without reconstructing the equidistant continuous carrier phases, show that receiver velocity and acceleration suffered significantly from clock jumps. An airborne kinematic experiment shows that the greatest impact on velocity and acceleration reaches up to 0.2 m/s, 0.1 m/s2 for the horizontal component and 0.5 m/s, 0.25 m/s2 for the vertical component. Therefore, it can be demonstrated that velocity and acceleration measurements by using a standalone GPS receiver can be immune to the influence of GPS receiver clock jumps with the proposed method.  相似文献   

15.
顾及误差频谱特性的CHZ重力仪航空应用研究   总被引:1,自引:0,他引:1  
给出了航空重力测量误差频域分析的方法,利用功率谱密度从频域分析了航空标量重力测量系统恢复重力场的能力及影响因素。介绍了CHZ重力仪的主要特点,并利用实测空中重力异常数据及机载GPS动态加速度数据,结合航空重力测量的频谱范围,分析了CHZ重力仪在不同阻尼系数下的动态性能。计算结果表明,采用合适的阻尼系数,CHZ重力仪能够被用于固定翼飞机的航空重力测量。  相似文献   

16.
GPS速度测量在航空重力测量中具有重要的作用。根据飞机平稳飞行的状态,建立了严密的状态方程,利用常加速度模型的速度预测值,构建了观测值验前残差检验量Q,并给出其误差源:观测误差与速度预测误差,根据检验量Q的统计特性结合IGGⅢ抗差方案,对含粗差的观测值作降权处理。采用静态数据分析观测误差的统计特性,并给出其模型参数,同时分析了理想运动状态下的速度预测精度以及数据采样率与新方法粗差探测能力之间的关系。通过静态和动态算例表明,新方法能有效探测出小于1周的粗差。  相似文献   

17.
邵凯  易彬  张厚喆  谷德峰 《测绘学报》2021,50(4):487-495
单星GPS相位模糊度固定可以显著提升低轨卫星的定轨精度。目前,CNES/CLS、武汉大学和CODE 3家机构都已公开发布用于单星模糊度固定的GPS整数相位钟产品。本文首先利用整数相位钟方法实现单星模糊度固定,并应用于低轨卫星精密定轨中;然后,对比分析了不同机构提供的整数相位钟产品在低轨卫星单星模糊度固定和精密定轨中的应用性能;最后,通过对GRACE-FO编队卫星数据进行处理,发现基于不同机构产品的窄巷模糊度固定成功率都可以达到94%左右。不同机构产品获得的模糊度固定解轨道的SLR(satellite laser ranging)检核残差RMS约为0.9 cm,与模糊度浮点解的定轨结果相比,单星绝对轨道精度提高了约30%。在分别利用CNES/CLS、武汉大学和CODE产品实现单星模糊度固定后,双星相对轨道的KBR(K-band ranging)检核残差RMS分别从5.7、5.4和5.3 mm减小到2.1、2.0和1.5 mm。结果表明,不同整数相位钟产品在GRACE-FO卫星单星模糊度固定和精密定轨中的效果相当。  相似文献   

18.
GPS单点测速的误差分析及精度评价   总被引:6,自引:0,他引:6  
首先从理论和实测数据模拟两方面分析了SA取消后各类误差源对GPS测速的影响,推导并计算了GPS单点测速可能达到的精度水平。然后用静态数据模拟动态测速试验和实测动态数据测速与同步高精度惯导测速的动态试验进行验证。结果表明,采用载波相位导出的多普勒观测值使用静态数据模拟动态测速,其精度可以达到mm/s级;用接收机输出的多普勒观测值进行测速时,其精度为cm/s级。在动态测速试验中,GPS单点测速方法(即多普勒观测值测速与导出多普勒观测值测速)间的符合精度达到cm/s级,与高精度的惯导测速结果的符合精度为dm/s级,而且和运动载体的动态条件(如加速度和加速度变化率的大小)具有很强的相关性。  相似文献   

19.
New results in airborne vector gravimetry using strapdown INS/DGPS   总被引:2,自引:0,他引:2  
A method for airborne vector gravimetry has been developed. The method is based on developing the error dynamics equations of the INS in the inertial frame where the INS system errors are estimated in a wave estimator using inertial GPS position as update. Then using the error-corrected INS acceleration and the GPS acceleration in the inertial frame, the gravity disturbance vector is extracted. In the paper, the focus is on the improvement of accuracy for the horizontal components of the airborne gravity vector. This is achieved by using a decoupled model in the wave estimator and decorrelating the gravity disturbance from the INS system errors through the estimation process. The results of this method on the real strapdown INS/DGPS data are promising. The internal accuracy of the horizontal components of the estimated gravity disturbance for repeated airborne lines is comparable with the accuracy of the down component and is about 4–8 mGal. Better accuracy (2–4 mGal) is achieved after applying a wave-number correlation filter (WCF) to the parallel lines of the estimated airborne gravity disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号