首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In the Gawler Craton, the completeness of cover concealing the crystalline basement in the region of the giant Olympic Dam Cu–Au deposit has impeded any sufficient understanding of the crustal architecture and tectonic setting of its IOCG mineral-system. To circumvent this problem, deep seismic reflection data were recently acquired from  250 line-km of two intersecting traverses, centered on the Olympic Dam deposit. The data were recorded to 18 s TWT ( 55 km). The crust consists of Neoproterozoic cover, in places more than 5 km thick, over crystalline basement with the Moho at depths of 13–14 s TWT ( 40–42 km). The Olympic Dam deposit lies on the boundary between two distinct pieces of crust, one interpreted as the Archean–Paleoproterozoic core to the craton, the other as a Meso–Neoproterozoic mobile belt. The host to the deposit, a member of the  1590 Ma Hiltaba Suite of granites, is situated above a zone of reduced impedance contrast in the lower crust, which we interpret to be source-region for its  1000 °C magma. The crystalline basement is dominated by thrusts. This contrasts with widely held models for the tectonic setting of Olympic Dam, which predict extension associated with heat from the mantle producing the high temperatures required to generate the Hiltaba Suite granites implicated in mineralization. We use the seismic data to test four hypotheses for this heat-source: mantle underplating, a mantle-plume, lithospheric extension, and radioactive heating in the lower crust. We reject the first three hypotheses. The data cannot be used to reject or confirm the fourth hypothesis.  相似文献   

2.
The Eastern Cordillera (Central Andes,  24°S) consists of a basement-involved thrust system, resulting from Miocene–Quaternary eastward migrating compression, separating the Puna plateau from the Santa Barbara System foreland. The inferred Tertiary strains arising from shortening in the Eastern Cordillera and Santa Barbara System are similar, higher than in the Puna. Slip data collected on the major  N–S trending faults of Eastern Cordillera show a westward progression from dip-slip (contraction) to dextral and sinistral motions. This, consistently with established tectonic models, may result from partitioning due to the oblique Mio-Quaternary underthrusting of the Brazilian Shield north of 24°S. This strain partitioning has three main implications. (1) As the dextral and sinistral shear in the Eastern Cordillera are  62% and 29% of the compressive strain respectively, the Eastern Cordillera results more strained than Santa Barbara System foreland, contrary to previous estimates. (2) The partitioning in the Eastern Cordillera may find its counterpart in that to the west of the Central Andes, giving a possible structural symmetry to the Central Andes. (3) The easternmost N–S strike-slip structures in the Eastern Cordillera coincide with the easternmost Mio-Pliocene magmatic centres in the Central Andes, at  24°S. Provided that, further to the east, the crust is partially molten, the absence of magmatic centres may be explained by the presence of pure compressive structures in this portion of the Eastern Cordillera.  相似文献   

3.
4.
Mineralizing fluids at the San Martín skarn show an evolution characterized by prograde and retrograde associations. The prograde mineral associations consist of (1) a massive garnet zone, (2) a tremolite ± garnet zone, and (3) a late association of quartz, sphalerite, calcite and fluorite lining the vugs in the garnet zone. The fluids of the prograde associations exhibit decreasing temperatures of homogenization (Th) and variable salinities. The fluids of the massive garnet zone have salinities of 36 wt.% NaCl equiv. and Th of 645 to 570 °C, corresponding to pressures of 1055 bar. At the tremolite ± garnet zone, Th range from 438 to 354 °C. In the late association at the endoskarn, the following evolution can be drawn: (a) salinities of 50 to 42 wt.% NaCl equiv., and Th of 455 to 346 °C in quartz, (b) salinities of 46 wt.% NaCl equiv., and Th of 415 to 410 °C in sphalerite, (c) salinities of 50 to 37 wt.% NaCl equiv., and Th of 479 to 310 °C in calcite, (d) salinities of 33 to 28 wt.% NaCl equiv. and of 24 to 22 wt.% KCl in fluorite, and (e) two types of fluids with salinities of 2 and 39 wt.% NaCl equiv. and Th 344 and 300 °C, respectively, in later saccharoidal quartz segregations. The retrograde mineral associations comprise pervasive propylitic alteration to carbonization, and mantos with sulfides. Fluids in epidote have salinities of 7.6 wt.% NaCl equiv. and Th of 287 to 252 °C, and in calcite have salinities of 9.2 to 1 wt.% NaCl equiv. and Th of 188 to 112 °C. Fluids in the sulfide assemblages in the mantos have salinities of 8 to 3 wt.% NaCl equiv. and Th 300 °C, with corresponding pressures of 94 bar. Fluids in late epithermal veins close to the intrusive body have salinities of 10 to 5 wt.% NaCl equiv. and Th of 275 to 200 °C, and distal veins show salinities of 2 to 1 wt.% NaCl equiv. and Th of 160 °C.  相似文献   

5.
It has been generally accepted that the South China Block was formed through amalgamation of the Yangtze and Cathaysia Blocks during the Proterozoic Sibaoan orogenesis, but the timing and kinematics of the Sibao orogeny are still not well constrained. We report here SHRIMP U–Pb zircon geochronological and geochemical data for the Taohong and Xiqiu tonalite–granodiorite stocks from northeastern Zhejiang, southeastern margin of the Yangtze Block. Our data demonstrate that these rocks, dated at 913 ± 15 Ma and 905 ± 14 Ma, are typical amphibole-rich calc-alkaline granitoids formed in an active continental margin. Combined with previously reported isotopic dates for the  1.0 Ga ophiolites and  0.97 Ga adakitic rocks from northeastern Jiangxi, the timing of the Sibao orogenesis is thus believed to be between  1.0 and  0.9 Ga in its eastern segment. It is noted that the Sibao orogeny in South China is in general contemporaneous with some other early Neoproterozoic (1.0–0.9 Ga) orogenic belts such as the Eastern Ghats Belt of India and the Rayner Province in East Antarctica, indicating that the assembly of Rodinia was not finally completed until  0.9 Ga.  相似文献   

6.
The Iberian Peninsula and the Maghreb experience moderate earthquake activity and oblique,  NW–SE convergence between Africa and Eurasia at a rate of  5 mm/yr. Coeval extension in the Alboran Basin and a N35°E trending band of active, left-lateral shear deformation in the Alboran–Betic region are not straightforward to understand in the context of regional shortening, and evidence complexity of deformation at the plate contact. We estimate 86 seismic moment tensors (MW 3.3 to 6.9) from time domain inversion of near-regional waveforms in an intermediate period band. Those and previous moment tensors are used to describe regional faulting style and calculate average stress tensors. The solutions associated to the Trans-Alboran shear zone show predominantly strike-slip faulting, and indicate a clockwise rotation of the largest principal stress orientation compared to the regional convergence direction (σ1 at N350°E). At the N-Algerian and SW-Iberian margins, reverse faulting solutions dominate, corresponding to N350°E and N310°E compression, respectively. Over most of the Betic range and intraplate Iberia, we observe predominately normal faulting, and WSW–ENE extension (σ3 at N240°E). From GPS observations we estimate that more than 3 mm/yr of African (Nubian)–Eurasian plate convergence are currently accommodated at the N-Algerian margin,  2 mm/yr in the Moroccan Atlas, and  2 mm/yr at the SW-Iberian margin. 2 mm/yr is a reasonable estimate for convergence within the Alboran region, while Alboran extension can be quantified as  2.5 mm/yr along the stretching direction (N240°E). Superposition of both motions explains the observed left-lateral transtensional regime in the Trans-Alboran shear zone. Two potential driving mechanisms of differential motion of the Alboran–Betic–Gibraltar domain may coexist in the region: a secondary stress source other than plate convergence, related to regional-scale dynamic processes in the upper mantle of the Alboran region, as well as drag from the continental-scale motion of the Nubian plate along the southern limit of the region. In the Atlantic Ocean, the  3.5 mm/yr, westward motion of the Gibraltar Arc relative to intraplate Iberia can be accommodated at the transpressive SW-Iberian margin, while available GPS observations do not support an active subduction process in this area.  相似文献   

7.
High velocity (1 m/s) friction experiments on bituminous coal gouge display several earthquake-related phenomena, including devolatilization by frictional heating, gas pressurization, and slip weakening. Stage I is characterized by sample shortening and reduction in the coefficient of friction (μ) from  1 to 0.6. Stage II is characterized by high frequency ( 5 Hz) oscillations in stress and strain records and by gas emissions. Stage III is marked by rapid weakening (μ  0.1 to 0.35) and sample shortening, together with continued gas emissions. Stage IV produces stable stress records and continued weakness (μ  0.2), but without gas emission. Stage I shortening is due to compaction of the gouge and the weakening is attributed to mechanical or thermal effects. Stage II behavior is interpreted as due to coal gasification and fluctuations in fluid pressure, resulting in high frequency stick-slip type behavior. Dramatic reduction in shear stress in stage III is attributed to gas pressurization by pore collapse and corresponds to a frictional instability, analogous to nucleation of an earthquake. Microstructural observations indicate the deformation was brittle during stages I and II but ductile during stages III and IV. Time dependent finite element frictional heat models indicate the center of the samples became hot ( 900 °C) during stage II, whereas the edge of samples remained relatively cold (< 300 °C). Vitrinite reflectance of coal samples shows an increase in reflectance from  0.5 to  0.8% over the displacement interval 20–40 m (20–40 s), indicating that the reflectance responds to frictional heating on a short time scale. The energy expended per unit area in these low stress, large displacement experiments is similar to that of higher stress ( 50 MPa), short displacement ( 1 m) earthquakes ( 107 J/m2).  相似文献   

8.
The crystalline terrane of the Tongbai–Dabie region, central China, comprising the Earth's largest ultrahigh-pressure (UHP) exposure was formed during Triassic collision between the Sino–Korean and Yangtze cratons. New apatite fission-track (AFT) data presented here from the UHP terrane, extends over a significantly greater area than reported in previous studies, and includes the (eastern) Dabie, the Hong'an (northwestern Dabie) and Tongbai regions. The new data yield ages ranging from 44 ± 3 to 142 ± 36 Ma and mean track lengths between 10 and 14.4 μm. Thermal history models based on the AFT data taken together with published 40Ar/39Ar, K–Ar, apatite and zircon (U–Th)/He and U–Pb data, exhibit a three-stage cooling pattern that is similar across the study region, commencing with an Early Cretaceous rapid cooling event, followed by a period of relative thermal stability during which rocks remained at temperatures within the AFT partial annealing zone (60–110 °C) and ending with a possible renewed phase of accelerated cooling during Pliocene to Recent time. The first cooling phase followed large-scale transtensional deformation between 140 and 110 Ma and is related to Early Cretaceous eastward tectonic escape and Pacific back arc extension. Between this phase and the subsequent slow cooling phase, a transition period from 120 to 80 Ma (to 70 to 45 Ma along the Tan–Lu fault) was characterised by a relatively low cooling rate (3–5 °C/Ma). This transition is likely related to a tectonic response associated with the mid-Cretaceous subduction of the Izanagi–Pacific plate as well as lithospheric extension and thinning in eastern Asia. The present regional AFT age pattern is therefore basically controlled by the Early Cretaceous rapid cooling event, but finally shaped through active Cenozoic faulting. Following the transition phase the subsequent slow cooling phase pattern implies a net reduction in horizontal compressional stress corresponding to increased extension rates along the continental margin due to the decrease in plate convergence. Modelling of the AFT data suggests a possible Pliocene–Recent cooling episode, which may be supported by increased rates of sedimentation observed in adjacent basins. This cooling phase may be interpreted as a response to the far-field effects of the frontal India–Eurasia collision to the west. Approximate estimates suggest that the total amount of post 120 Ma denudation across the UHP orogen ranged from 2.4 to 13.2 km for different tectonic blocks and ranged from 0.8 to 9.7 km during the Cretaceous to between 1.7 and 3.8 km during the Cenozoic.  相似文献   

9.
We have studied seismic surface waves of 255 shallow regional earthquakes recently recorded at GEOFON station ISP (Isparta, Turkey) and have selected these 52 recordings with high signal-to-noise ratio for further analysis. An attempt was made by the simultaneous use of the Rayleigh and Love surface wave data to interpret the planar crust and uppermost mantle velocity structure beneath the Anatolian plate using a differential least-square inversion technique. The shear-wave velocities near the surface show a gradational change from approximately 2.2 to 3.6 km s− 1 in the depth range 0–10 km. The mid-crustal depth range indicating a weakly developed low velocity zone has shear-wave velocities around 3.55 km s− 1. The Moho discontinuity characterizing the crust–mantle velocity transition appears somewhat gradual between the depth range  25–45 km. The surface waves approaching from the northern Anatolia are estimated to travel a crustal thickness of  33 km whilst those from the southwestern Anatolia and part of east Mediterranean Sea indicate a thicker crust at  37 km. The eastern Anatolia events traveled even thicker crust at  41 km. A low sub-Moho velocity is estimated at  4.27 km s− 1, although consistent with other similar studies in the region. The current velocities are considerably slower than indicated by the Preliminary Reference Earth Model (PREM) in almost all depth ranges.  相似文献   

10.
The small granite plutons occurring at the contact of the Singhbhum-Orissa Iron Ore craton (IOC) to the north and the Eastern Ghat Granulite Belt (EGGB) to the south in eastern Indian shield are characterised by the presence of enclaves of the granulites of EGGB and the greenschist facies rocks of IOC. These granites also bear the imprints of later cataclastic deformation which is present at the contact of the IOC and the EGGB. In situ Pb-Pb zircon dating of these granites gives minimum age of their formation 2.80 Ga. A whole-rock three point Rb-Sr isochron age of this rock is found to be 2.90 Ga. Therefore, the true age of formation of these granites will be around 2.90–2.80 Ga. These granitic rocks also contain xenocrystic zircon components of 3.50 Ga and show a later metasomatic or metamorphic effect 2.48 Ga obtained from the analyses on overgrowths developed on 2.80 Ga old zircon cores. The presence of granulitic enclaves within these contact zone granite indicates that the granulite facies metamorphism of the EGGB is 2.80 Ga or still older in age. The cataclastic deformations observed at the contact zone of the two adjacent cratons is definitely younger than 2.80 Ga and possibly related to 2.48 Ga event observed from the overgrowths. As 2.80 Ga granite plutons of small dimensions are also observed at the western margin of the IOC; it can be concluded that a geologic event occurred 2.80 Ga over the IOC when small granite bodies evolved at the marginal part of this craton after its stabilisation at 3.09 Ga.  相似文献   

11.
W.G. Ernst   《Gondwana Research》2009,15(3-4):243-253
Intense devolatilization and chemical-density differentiation attended late-stage accretion of the primitive Earth; it lessened after crystallization of a magma mush ocean during continued cooling. By 4.3Ga, shallow seas were present, so surface temperatures had fallen far below the 1300, 1120, and 950°C low-pressure solidi of peridotite, basalt, and granite, respectively. At temperatures less than about half their solidi, such materials existed as lithosphere in the near-surface Hadean realm. Stagnant-lid convection probably did not occur because massive heat transfer necessitated vigorous crust–mantle overturn in the early, hot Earth. Instead, bottom-up mantle convection, including voluminous plume ascent, efficiently rid the planet of heat, but lessened over time. Plate thickening and broadening is reflected in the post-Hadean rock record. Stages of geologic evolution included: (a) 4.5–4.4Ga, early, chaotic magma mush ocean overturn and ephemeral lithospheric platelets; (b) 4.4–2.7Ga, growth of oceanic and diminutive continental plates, obliterated by return mantle flow prior to 4.0Ga, but the latter enlarging and gradually accumulating as largely submarine, sutured, sialic crust-capped lithospheric collages; (c) 2.7–1.0Ga, progressive assembly of old shields and younger orogenic belts into supercratonal plates characterized by continental freeboard, sedimentary differentiation, and episodic glaciation during transpolar drift, as well as onset of regionally, temporally limited stagnant-lid convection beneath supercontinents; (d) 1.0Ga-present, modern, laminar-flowing asthenospheric cells capped by giant, stately moving plates. Restriction of komatiitic lavas to the Archean, and of multicycle sediments, most ophiolite complexes ± alkaline igneous rocks, and high-pressure and ultrahigh-pressure metamorphic belts to progressively younger Proterozoic–Phanerozoic orogens reflects increasingly negative buoyancy of the cooler oceanic lithosphere. Attending supercontinent assembly, density instabilities of thickening oceanic plates increasingly began to dominate overturn of the suboceanic mantle as cold, top-down convection. Scales and dynamics of hot asthenospheric upwelling versus lithospheric foundering and asthenospheric return flow (bottom-up versus top-down) changed gradually over geologic time in response to planetary thermal relaxation.  相似文献   

12.
Integration of on-land and offshore geomorphological and structural investigations coupled to extensive radiometric dating of co-seismically uplifted Holocene beaches allows characterization of the geometry, kinematics and seismotectonics of the Scilla Fault, which borders the eastern side of the Messina Strait in Calabria, Southern Italy. This region has been struck by destructive historical earthquakes, but knowledge of geologically-based source parameters for active faults is relatively poor, particularly for those running mostly offshore, as the Scilla Fault does. The  30 km-long normal fault may be divided into three segments of  10 km individual length, with the central and southern segments split in at least two strands. The central and northern segments are submerged, and in this area marine geophysical data indicate a youthful morphology and locally evidence for active faulting. The on-land strand of the western segment displaces marine terraces of the last interglacial (124 to 83 ka), but seismic reflection profiles suggest a full Quaternary activity. Structural data collected on bedrock faults exposed along the on-land segment provide evidence for normal slip and  NW-SE extension, which is consistent with focal mechanisms of large earthquakes and GPS velocity fields in the region. Detailed mapping of raised Holocene marine deposits exposed at the coastline straddling of the northern and central segments supplies evidence for two co-seismic displacements at  1.9 and  3.5 ka, and a possible previous event at  5 ka. Co-seismic displacements show a consistent site value and pattern of along-strike variation, suggestive of characteristic-type behaviour for the fault. The  1.5–2.0 m average co-seismic slips during these events document Me  6.9–7.0 earthquakes with  1.6–1.7 ka recurrence time. Because hanging-wall subsidence cannot be included into slip magnitude computation, these slips reflect footwall uplift, and represent minimum average estimates. The palaeoseismological record based on the palaeo-shorelines suggests that the last rupture on the Scilla Fault during the February 6, 1783 Mw = 5.9–6.3 earthquake was at the expected time but it may have not entirely released the loaded stress since the last great event at  1.9 ka. Comparison of the estimated co-seismic extension rate based on the Holocene shoreline record with available GPS velocities indicates that the Scilla Fault accounts for at least  15–20% of the contemporary geodetic extension across the Messina Strait.  相似文献   

13.
Wide-angle seismic and gravity data across the Narmada-Son lineament (NSL) in central India are analyzed to determine crustal structure, velocity inhomogeneities and hence constrain the tectonics of the lineament. We present the 2-D crustal velocity structure from deep wide-angle reflection data by using a ray-trace inverse approach. The main result of the study is the delineation of fault-bounded horst raised to a subsurface depth (1.5 km) and the Moho upwarp beneath the NSL. The crust below the basement consists of three layers with velocities of 6.45–6.7, 6.2–6.5 and 6.7–6.95 km/s and interface depths of about 5.5–8.7, 14–17 and 18–23 km along the profile. The low-velocity (6.2–6.5 km/s) layer goes up to a depth of 5 km and becomes the thickest part (13 km), while the overlying high-velocity (6.45–6.7 km/s) layer becomes the thinnest (3 km) and upper boundary lies at a depth of 1.5 km beneath the NSL. The overall uncertainties of various velocity and boundary nodes are of the order of ±0.12 km/s and ±1.40 km, respectively. The up-lifted crustal block and the up-warping Moho beneath the NSL indicate that the north and south faults bounding the NSL are deeply penetrated through which mafic materials from upper mantle have been intruded into the upper crust. Gravity modeling was also undertaken to assess the seismically derived crustal features and to fill the seismic data gap. The lateral and vertical heterogeneous nature of the structure and velocity inhomogeneities in the crust cause instability to the crustal blocks and played an important role in reactivation of the Narmada south fault during the 1997 Jabalpur earthquake.  相似文献   

14.
M. Faccenda  G. Bressan  L. Burlini   《Tectonophysics》2007,445(3-4):210-226
The compressional and shear wave velocities have been measured at room temperature and pressure up to 450 MPa on 5 sedimentary rock samples, representative of the most common lithologies of the upper crust in the central Friuli area (northeastern Italy). At 400 MPa confining pressure the Triassic dolomitic rock shows the highest velocities (Vp  7 km/s, Vs  3.6 km/s), the Jurassic and Triassic limestones samples intermediate velocities (Vp  6.3 /s, Vs  3.5 km/s) and the Cenozoic and Paleozoic sandstones the lowest velocities (Vp  6.15 km/s, Vs  3.35 km/s). The Paleozoic sandstone sample is characterized by the strongest anisotropy (10%) and significant birefringence (0.2 km/s) is found only on the Cenozoic sandstone sample. We elaborated the synthetic profiles of seismic velocities, density, elastic parameters and reflection coefficient, related to 4 one-dimensional geological models extended up to 22 km depth. The synthetic profiles evidence high rheological contrasts between Triassic dolomitic rocks and the soft sandstones and the Jurassic limestones. The Vp profiles obtained from laboratory measurements match very well the in-situ Vp profile measured by sonic log for the limestones and dolomitic rocks, supporting our one-dimensional modelling of the calcareous-carbonatic stratigraphic series. The Vp and Vs values of the synthetic profiles are compared with the corresponding ones obtained from the 3-D tomographic inversion of local earthquakes. The laboratory Vp are generally higher than the tomographic ones with major discrepancies for the dolomitic lithology. The comparison with the depth location of seismicity reveals that the seismic energy is mainly released in correspondence of high-contrast rheological boundaries.  相似文献   

15.
Coaly source rocks are sufficiently different from marine and lacustrine source rocks in their organic matter characteristics to warrant separate guidelines for their assessment using Rock-Eval pyrolysis. The rank threshold for oil generation is indicated by the increase in BI (S1/TOC) at Rank(Sr)9–10 (Tmax 420–430 °C, Ro 0.55–0.6%), and the threshold for oil expulsion is indicated by the peak in QI ([S1+S2]/TOC) at Rank(Sr)11–12.5 (Tmax 430–440 °C, Ro 0.65–0.85%). The pronounced rank-related increase in HI (S2/TOC) prior to oil expulsion renders the use of immature samples inappropriate for source rock characterisation. A more realistic indication of the petroleum generative potential and oil expulsion efficiency of coaly source rocks can be gained from samples near the onset of expulsion. Alternatively, effective HI′ values (i.e. HIs near the onset of expulsion) can be estimated by translating the measured HIs of immature samples along the maturation pathway defined by the New Zealand (or other defined) Coal Band. Coaly source rocks comprise a continuum of coaly lithologies, including coals, shaly coals and coaly mudstones. Determination of the total genetic potential of coaly source rock sequences is best made using lithology-based samples near the onset of expulsion.  相似文献   

16.
The state of the upper mantle beneath southern Africa   总被引:3,自引:1,他引:2  
We present a new upper mantle seismic model for southern Africa based on the fitting of a large (3622 waveforms) multi-mode surface wave data set with propagation paths significantly shorter (≤ 6000 km) than those in globally-derived surface wave models. The seismic lithosphere beneath the cratonic region of southern Africa in this model is about 175 ± 25 km thick, consistent with other recent surface wave models, but significantly thinner than indicated by teleseismic body-wave tomography. We determine the in situ geotherm from kimberlite nodules from beneath the same region and find the thermal lithosphere model that best fits the nodule data has a mechanical boundary layer thickness of 186 km and a thermal lithosphere thickness of 204 km, in very good agreement with the seismic measurement. The shear wave velocity determined from analyzes of the kimberlite nodule compositions agree with the seismic shear wave velocity to a depth of 150 km. However, the shear wave velocity decrease at the base of the lid seen in the seismic model does not correspond to a change in mineralogy. Recent experimental studies of the shear wave velocity in olivine as a function of temperature and period of oscillation demonstrate that this wave speed decrease can result from grain boundary relaxation at high temperatures at the period of seismic waves. This decrease in velocity occurs where the mantle temperature is close to the melting temperature (within 100 °C).  相似文献   

17.
The lack of paleoecological records from the montane Atlantic Rainforest of coastal Brazil, a hotspot of biological diversity, has been a major obstacle to our understanding of the vegetational changes since the last glacial cycle. We present carbon isotope and pollen records to assess the impact of the glaciation on the native vegetation of the Serra do Mar rainforest in São Paulo, Brazil. From ca. 28,000 to  22,000 14C yr BP, a subtropical forest with conifer trees is indicative of cool and humid conditions. In agreement carbon isotopic data on soil organic matter suggest the presence of C3 plants and perhaps C4 plants from  28,000 to  19,000 14C yr BP. The significant increase in the sedimentation rate and algal spores from  19,450 to  19,000 14C yr BP indicates increasing humidity, associated to an erosion process between  19,000 and  15,600 14C yr BP. From  15,600 14C yr BP to present there is a substantial increase in arboreal elements and herbs, indicating more humid and warmer climate. From  19,000 to  1000 14C yr BP, δ13C values indicated the predominance of C3 plants. These results are in agreement with studies in speleothems of caves, which suggest humid conditions during the last glacial maximum.  相似文献   

18.
The late Quaternary paleoclimate of eastern Beringia has primarily been studied by drawing qualitative inferences from vegetation shifts. To quantitatively reconstruct summer temperatures, we analyzed lake sediments for fossil chironomids, and additionally we analyzed the sediments for fossil pollen and organic carbon content. A comparison with the δ18O record from Greenland indicates that the general climatic development of the region throughout the last glaciation–Holocene transition differed from that of the North Atlantic region. Between  17 and 15 ka, mean July air temperature was on average 5°C colder than modern, albeit a period of near-modern temperature at  16.5 ka. Total pollen accumulation rates ranged between  180 and 1200 grains cm− 2 yr− 1. At  15 ka, approximately coeval with the Bølling interstadial, temperatures again reached modern values. At  14 ka, nearly 1000 yr after warming began, Betula pollen percentages increased substantially and mark the transition to shrub-dominated pollen contributors. Chironomid-based inferences suggest no evidence of the Younger Dryas stade and only subtle evidence of an early Holocene thermal maximum, as temperatures from  15 ka to the late Holocene were relatively stable. The most recognizable climatic oscillation of the Holocene occurred from  4.5 to 2 ka.  相似文献   

19.
The Indo-Pacific Warm Pool (IPWP) is thought to play a key role in the propagation and amplification of climate changes through its influence on the global distribution of heat and water vapour. However, little is known about past changes in the size and position of the IPWP. In this study, we use a total of 48 modern and fossil coral records from the Mentawai Islands (Sumatra, Indonesia) and Muschu/Koil Islands (Papua New Guinea) to reconstruct oscillations in the extent of the IPWP since the mid-Holocene. We show that reliable estimates of mean sea surface temperature (SST) can be obtained from fossil corals by using low-resolution Sr/Ca analysis of a suite of corals to overcome the large uncertainties associated with mean Sr/Ca-SST estimates from individual coral colonies. The coral records indicate that the southeastern and southwestern margins of the IPWP were cooler than at present between 5500 and 4300 years BP (1.2 °C ± 0.3 °C) and were similarly cool before 6800 years BP. This mid-Holocene cooling was punctuated by an abrupt, short-lived shift to mean SSTs that were warmer than at present between 6600 and 6300 years BP (1.3 °C ± 0.3 °C), while similarly warm conditions may have also existed after 4300 years BP. We suggest that mid-Holocene cooling at our study sites was related to contractions of the southeastern and southwestern margins of the IPWP, associated with the more northerly position of the Inter-tropical Convergence Zone (ITCZ) that accompanied mid-Holocene strengthening of the Asian summer monsoon. Conversely, intervals of abrupt warming appear to correspond with widespread episodes of monsoon weakening and accompanying southward migrations of the ITCZ that caused the IPWP to expand beyond our coral sites. Intervals of a strengthened Asian monsoon and cooling in the southwestern IPWP during the mid-Holocene appear to correspond with a more positive Indian Ocean Dipole (IOD)-like mean configuration across the tropical Indian Ocean, suggesting that the Asian monsoon–IOD interaction that exists at interannual time scales also persists over centennial to millennial scales. Associated mean changes in the Pacific ENSO modes may have also occurred during the mid-Holocene. The dynamic and inter-connected behaviour of the IPWP with tropical climate systems during the mid-Holocene highlights the fundamental importance of the warm pool region for understanding climate change throughout the tropics and beyond.  相似文献   

20.
Late- to post-magmatic deformation in slightly diachronous contiguous intrusions of the north-western Adamello batholith (Southern Alps, Italy) is recorded as, from oldest to youngest: (i) joints, (ii) solid-state ductile shear zones, (iii) faults associated with epidote-K-feldspar veins and (iv) zeolite veins and faults. Structures (ii) to (iv) are localized on the pervasive precursory network of joints (i), which developed during the earliest stages of pluton cooling. High temperature ( 500 °C), ductile overprinting of joints produced lineations, defined by aligned biotite and hornblende, on the joint surfaces and highly localized mylonites. The main phase of faulting, producing cataclasites and pseudotachylytes, occurred at  250 °C and was associated with extensive fluid infiltration. Cataclasites and pseudotachylytes are clustered along different E–W-striking dextral strike-slip fault zones correlated with the activity of the Tonale fault, a major tectonic structure that bounds the Adamello batholith to the north. Ductile deformation and cataclastic/veining episodes occurred at P = 0.25–0.3 GPa during rapid cooling of the batholith to the ambient temperatures ( 250 °C) that preceded the exhumation of the batholith. Timing of the sequence of deformation can be constrained by 39Ar–40Ar ages of  30 Ma on pseudotachylytes and various existing mineral ages. In the whole composite Adamello batholith, multiple magma pulses were intruded over the time span 42–30 Ma and each intrusive body shows the same ductile-to-brittle structural sequence localized on the early joint sets. This deformation sequence of the Adamello might be typical of intrusions undergoing cooling at depths close to the brittle–ductile transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号