首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
西昆仑奥依塔格石炭-二叠纪岩浆岩:弧后盆地的产物?   总被引:1,自引:1,他引:0  
目前对西昆仑石炭-二叠纪火山岩分带性、形成环境、深部地幔源区特征还缺乏较好的约束。在区域地质填图、综合研究的基础上,将西昆仑石炭-二叠纪岩浆岩空间上分为南带、北带。本文展示了北带岩浆岩集中出露的奥依塔格地区玄武岩、辉绿岩、辉长岩的地球化学和Sr、Nd、Pb同位素以及与辉长岩共生的斜长花岗岩的锆石LA-ICP-MS测年数据,以约束该区基性岩形成的时代、构造环境和地幔源区特征,同时与库地玄武岩、阿羌基性火山岩进行了比较。目前的数据表明:(1)斜长花岗岩单颗粒锆石LA-ICP-MS测年得到313.6±1.6Ma、291.6±1.7Ma两组年龄,后者代表斜长花岗岩和辉长岩的侵位时代,前者可能代表玄武岩的年龄。(2)球粒陨石标准化稀土元素配分模式图中,玄武岩显示轻稀土略富集的向右缓倾模式,辉绿岩、辉长岩均为轻稀土略亏损的近平坦型;原始地幔标准化微量元素值均表现为大离子亲石元素相对富集,Nb、Ta谷明显,高场强元素中后半部分呈平坦型模式。(3)地球化学指标显示奥依塔格一带基性岩未受到或很少受到地壳物质混染,样品的Nd、Pb组成可以用来代表地幔源区的成分特点,Nd-Pb、Pb-Pb图解显示其代表的地幔源区具有"Dupal"异常,并于金沙江蛇绿岩中玄武岩代表的地幔源区有较高的一致性。(4)综合岩石地球化学、沉积组合认为奥依塔格基性岩形成于弧后盆地构造环境,区域对比,指出它与库地一些克沟组玄武岩、于田县阿羌组火山岩同为康西瓦-麻扎混杂岩带代表的洋盆向北俯冲,引发弧后盆地扩展的结果。  相似文献   

2.
湘南汝城盆地火山岩岩石地球化学及其成因意义   总被引:5,自引:0,他引:5  
汝城盆地基性火山岩系由辉绿岩、玄武岩和玄武质火山碎屑岩组成,属于低钾拉斑玄武岩系。基性火山岩系具有同一岩浆源区。岩石微量元素出现弱的LILE富集和Ta,Nb,Ti的亏损。强不相容元素比值反映岩浆源区明显偏离原始地幔组分,具有富集型异常地幔岩浆源区特征。岩浆源区同时受到地壳物质混染和来自先前消减残留板片流体或熔体交代的双重改造作用。在陆内拉张构造条件下富集型异常地幔岩浆源区的部分熔融是制约汝城盆地基性火山岩形成的主要因素。  相似文献   

3.
位于北山中带的月牙山-洗肠井蛇绿岩带是北山地区出露最好的蛇绿岩带之一,枕状玄武岩和堆晶辉长岩表现出轻稀土元素亏损-平坦的分配模式,(La/Yb)N=0.47~1.62,类似N-MORB;而相对于N-MORB则又富集大离子亲石元素,亏损Nb、Ta等高场强元素,与典型岛弧火山岩相似;即基性岩类同时具有类似岛弧火山岩和洋中脊火山岩的地球化学特征,与产出于弧后盆地的新疆库尔提蛇绿岩的基性岩及现代弧后盆地(Mariana)相似,根据其地球化学特征进行构造环境判别,基本反映出弧后盆地火山岩的特征.另外样品的ENd(t)为较高的正值(6.11~8.17),表明其源区应为亏损地幔.结合研究区的沉积建造特征可以判断,月牙山-洗肠井蛇绿岩应形成于弧后盆地,与其北部的斜山-东七一山火山弧构成塔里木板块北缘的“弧-盆”体系.  相似文献   

4.
阿尔金茫崖地区早古生代蛇绿岩的地球化学特征   总被引:5,自引:0,他引:5  
王焰  刘良  车自成  陈丹玲  罗金海 《地质论评》1999,45(7):1010-1014
阿尔金茫崖地区基性火山岩属拉斑玄武岩系列,稀土配分模式均为LREE略富集型,Ti/V值为37~62,Th/Ta值接近1,少数大于1.5, Nb/Th值为7.7~16.8,显示了EMORB或OIB的特征。[HT5]ε[HT5\"]Nd(t)值为3.95~4.12,表明其源区来自亏损 地幔,但又有富集地幔物质的加入。茫崖基性火山岩的微量元素特征与冰岛Galapagos群岛Alcedo玄武岩的一致,说明阿尔金茫崖蛇绿岩产出在洋脊环境中,其源区是上地幔亏损物质和与地幔柱有关的富集地幔物质混合作用的结果。  相似文献   

5.
秦安葫芦河基性火山岩特征及其成因   总被引:1,自引:0,他引:1       下载免费PDF全文
葫芦河基性火山岩以钙碱性玄武岩系列为主,少部分属拉斑系列;稀土总量高,属轻稀土富集型,无明显Eu异常,微量元素经N-MORB标准化,其曲线具明显"三隆起"形式,表现为Sr、Ba、K、Rb、Th等大离子亲石元素的强烈富集及Nb、Zr、Hf的亏损,岩浆来自富集地幔源区;该火山岩系形成于近弧的弧后扩张背景下的有限微洋盆环境,葫芦河基性火山岩构成该微洋盆型蛇绿岩上部岩石单元。  相似文献   

6.
葫芦河基性火山岩以钙碱性玄武岩系列为主,少部分属拉斑系列;稀土总量高,属轻稀土富集型,无明显Eu异常,微量元素经N-MORB标准化,其曲线具明显"三隆起"形式,表现为Sr、Ba、K、Rb、Th等大离子亲石元素的强烈富集及Nb、Zr、Hf的亏损,岩浆来自富集地幔源区;该火山岩系形成于近弧的弧后扩张背景下的有限微洋盆环境,葫芦河基性火山岩构成该微洋盆型蛇绿岩上部岩石单元。  相似文献   

7.
碧口群中部的基性熔岩以亚碱性的拉斑系列为主,火山岩的初始Sr比值和初始钕比值较低,分别为0.701248~0.704413和0.511080~0.512341。大部分样品的εNd值>0,表明母岩浆主要来自地幔源区,近似EM型地幔源区。岩石显示明显的富~(207)pb及~(208)pb特征。在以部分熔融作用为主的演化过程中岩浆发生了一定程度的分异,LREE、大离子亲石元素等表现了从亏损到富集的变化特点。基性熔岩的稀土与微量元素表现了与俯冲碰撞型的弧区玄武岩相同的特点。分析表明:碧口群火山岩系形成于岛弧环境。最近研究表明,与碧口群火山岩关系紧密的横丹群浊积岩系为一套充填于弧前盆内的活动型浊  相似文献   

8.
海南岛抱板群变质基性火山岩的岩石学、地球化学、Sr、Nd、Pb同位素及其形成的大地构造环境的综合研究表明 ,抱板群变质基性火山岩具有洋中脊型拉斑玄武岩和岛弧型拉斑玄武岩的双重特征 ,起源于亏损地幔 ,是古俯冲消减带上部岩石圈地幔楔、自消减带卷入地幔楔地壳物质及俯冲洋壳析出的流体构成的三元混合物部分熔融结果 ,产生于扩张弧后 (或弧间 )盆地环境。地球动力学分析表明 ,古中元古代时 ,海南岛西部可能经历了一次由“开”向“合”转变的构造演化史。  相似文献   

9.
西藏果芒错蛇绿岩位于狮泉河—纳木错—波密蛇绿混杂岩带的中段,主要由地幔橄榄岩、铁镁质-超铁镁质堆晶杂岩、枕状熔岩、基性岩墙和硅质岩等单元组成。对果芒错蛇绿混杂岩中超铁镁质堆晶岩、基性岩岩石学及地球化学特征的研究表明,果芒错超铁镁质堆晶杂岩具很好的堆晶韵律,岩石化学特征反映了随着Mg O含量的降低其从底到顶的连续分离结晶过程;堆晶杂岩稀土元素总体上具LREE富集、Eu轻微异常特点,微量元素具有富集高场强元素、亏损大离子亲石元素的特征,且相容元素显示良好的变化规律,指示岩石来自受富集组分混染的地幔源区,并在后期经历了俯冲流体作用。果芒错基性岩具有富集型洋中脊玄武岩(E-MORB)叠加岛弧型玄武岩(IAB)的地球化学特征,并受到后期俯冲流体的影响。根据果芒错蛇绿岩地球化学属性及其构造环境判别图解,推断该地区蛇绿岩生成于扩张的弧后盆地构造环境。作为狮泉河—纳木错—波密蛇绿岩带的一部分,该区蛇绿岩以班公湖—怒江特提斯洋弧后盆地的形式存在。  相似文献   

10.
邓明荣  董永胜  张修政  张乐  许王  柳佳成 《地质通报》2014,33(11):1740-1749
以变质玄武岩为研究对象,对红脊山蛇绿岩进行了详细的岩石学和地球化学研究。结果表明,玄武岩主量元素含量与典型的N-MORB非常相似,稀土元素总量较低,具有轻稀土元素略亏损的近平坦左倾型配分型式,Eu异常不显著(δEu=1.05~1.16)。微量元素蛛网图总体也与N-MORB相似,表明变质基性岩源于N-MORB型亏损地幔源区。与典型的大洋中脊玄武岩相比,微量元素蛛网图显示出部分大离子亲石元素明显富集和部分高场强元素明显亏损的特征,尤其是Nb的亏损较为明显(Nb=1.67×10-6~2.26×10-6,平均值为1.97×10-6),表明本区玄武岩受俯冲带物质的影响,很可能形成于俯冲带之上的弧后盆地次级扩张的大地构造背景,属SSZ型蛇绿岩范畴,为特提斯大洋岩石圈在俯冲过程中引发弧后盆地次级扩张的产物。本研究为龙木错—双湖—澜沧江板块缝合带中西段的构造演化研究提供了重要依据。  相似文献   

11.
Geochemical characteristics of Ordovician basic volcanic rocks help to define the evolving tectonic setting of the Argentine Puna and northern Chile. Four spatially distinct magmatic groups are defined on geological, petrographical, geochemical and isotopic bases, each associated with particular geodynamic environments.The Tremadoc western group of subalkaline low K tholeiites with arc and modified MORB like signatures represent early stages of a back-arc basin, where spreading was incipient.The Arenig western group, medium K calc-alkaline basalts to andesites have volcanic arc in transition to back-arc signatures.The Tremadoc subalkaline basalts of the eastern group have REE patterns similar to E-MORB and at the same time weak subduction characteristics suggesting a rather mature supra-subduction zone (SSZ) basin. In contrast, the Late Tremadocian-Arenig basalts of the same group have intra-plate signatures, interpreted as magmas that ascended along pull apart regions associated with a transtensional regime.The geochemical patterns were applied to correlate basic sequences of doubtful geological setting. So, basalts from Chile were related to the Tremadocian western group, where they represent a slightly more mature stage of spreading of the basin. Basic rocks from Pocitos and part of Calalaste represent pre-Ordovician records of a back-arc system similar to that of the Tremadoc western group. Clearly similar arc patterns to those of the Arenig western group allow extending the arc environment to the southern Puna. The Tremadocian basalts from the eastern group were related to metabasites from the southern Puna, as part of a back-arc environment at that time.  相似文献   

12.
位于额尔齐斯-玛音鄂博大断裂带南侧的阿热勒托别变质基性岩产于下石炭统姜巴斯套组一套细碎屑沉积岩中.岩石组成以变质玄武岩为主, 它们具有相对高的TiO2、MgO和低SiO2、K2O的特点; 在稀土元素组成上, 显示轻稀土弱富集的配分模式, 无明显Eu异常; 微量元素组成显示大离子亲石元素富集, 并具有明显的正Th异常和弱的Nb负异常、高的Nb含量(> 2×10-6) 以及HFSE基本上和MORB相当的特点; 其Zr/Nb比值落在MORB范围之内, 而Ti/V比值略比MORB高, 表明其为MORB源的亏损地幔在相对较低熔融程度下熔融的产物.其εNd(t) 值为+7.40~+8.35, 略低于MORB, 但高于洋岛以及大陆板内玄武岩.因此该变质基性岩总体上兼有火山弧和洋中脊玄武岩特征, 因而其可能形成于弧后环境, 代表了弧后盆地扩张早期的产物.   相似文献   

13.
国坤  翟世奎  于增慧  蔡宗伟  张侠 《地球科学》2016,41(10):1655-1664
冲绳海槽是一个处于弧后扩张作用早期的年轻的弧后盆地,是研究弧后扩张作用早期盆地演化和壳幔过程的天然实验室.随着调查研究工作的逐步展开和深入,也发现了一些新的、重要的、亟待解决的科学问题,而火山岩岩石系列归属的厘定又是其他研究工作的基础.在系统收集和整理迄今已有冲绳海槽火山岩资料的基础上,结合近期分析测试数据, 对冲绳海槽火山岩的岩石系列归属进行了重新厘定,探讨了火山岩的构造环境指示意义和浮岩与玄武岩之间的成因联系.研究结果表明:冲绳海槽火山岩分布具有以基性玄武岩和酸性(流纹)英安岩为主的双峰式特征,中性火山岩稀少,基性的玄武岩属于亚碱性系列的橄榄拉斑玄武岩,酸性浮岩可归属为亚碱性岩系的流纹英安岩或流纹岩;在构造环境判别上,冲绳海槽玄武岩表现出大洋中脊和岛弧构造环境的特点,既有别于大洋中脊扩张中心,也有别于成熟型弧后盆地,呈现出弧后早期扩张阶段盆地独特的构造环境特征;广泛分布于冲绳海槽的酸性浮岩表现出一定的岛弧环境的特点;酸性浮岩与玄武岩具有同源性,酸性岩是基性的玄武质岩浆经不同程度结晶分异和同化混染作用的产物.   相似文献   

14.
The Kemashi Domain, a lithotectonic subdivision of the Neoproterozoic Tuludimtu Orogenic Belt of western Ethiopia, consists of a suite of mafic–ultramafic volcanic and plutonic rocks, and interbedded deep marine sediments, mainly graphite-bearing pelitic schists and phyllites, and graphitic quartzites and cherts. Pillow structures indicate submarine extrusion of the volcanics, whilst partings within some of the basalts may represent sheeted dykes. An associated mélange unit, composed of blocks of the same rock types as above, set in a fine schistose matrix, also occurs. This assemblage is interpreted as a dismembered ophiolite—the Tuludimtu Ophiolite—formed in a deep oceanic environment. A turbiditic sequence is also present in the domain.The Tuludimtu Ophiolite underwent intense compression during the Neoproterozoic Pan African Orogeny, resulting in early recumbent folding and westwards-directed thrusting, followed by reactivation of steeper zones of the thrusts as N–S orogen-parallel strike-slip shear zones, accompanied by refolding of early folds into upright horizontal folds. This was followed by development of deep crustal NNW–SSE orogen-transecting shear zones, which were reactivated as brittle faults during orogenic collapse of the Tuludimtu Belt. Metamorphism to lower greenschist facies grade accompanied orogenesis.Major, trace and REE geochemistry of volcanic and some plutonic igneous rocks, has been employed to define the tectonic setting of the terrane. Tectonic discrimination diagrams, utilising REE and HFSE, indicate a wide distribution spectrum but with the majority of samples plotting in arc basalt and MORB fields, suggesting derivation from sources similar to N-MORB and depleted MORB (typical of many arc basalts). Most of the samples exhibit a slight depletion of immobile elements, relative to N-MORB values and also show depletion of Zr, Ti, Nb and Y, implying that their source had been depleted by an earlier melting episode. Overall, the geochemistry typifies spreading centre basalts with some compositional features transitional to those of arc basalts, a characteristic of back-arc basalts.Lithological association, structural style and geochemistry of the rock assemblage in the Kemashi Domain thus define an ophiolite interpreted to have formed within a deep marine environment. This is thought to have been due to rifting of continental crust within a back-arc basin regime in a continental margin type extensional setting. Comparison with other ophiolitic terranes within the Arabian Nubian Shield, suggests that many of these terranes may represent back-arc basin type tectonic settings, similar to the Kemashi Domain. This supports the multi-stage accretion model for closure of the Mozambique Ocean, for which the Pacific Ocean may be a present day analogue.  相似文献   

15.
B. Mocek   《Lithos》2001,57(4):263-289
Blueschists, eclogites, chlorite–actinolite rocks and jadeite-gneisses of the blueschist unit of Siphnos have been investigated for their geochemical composition. Their protolith nature is characterised and a geodynamic model for the pre-metamorphic evolution of these metavolcanic rocks is proposed on the basis of immobile elements, especially trace elements and rare earth elements (REE).

The protoliths of the eclogites are characterised as calc-alkaline basalts, andesites and Fe-rich tholeiites evolving in an island-arc setting. Trace element data indicate that subducted marine sediments were assimilated in the magma chamber, enriching the protoliths in LILE and Pb. Produced in the early stage of back-arc basin opening, a protolith with affinities to both island-arc and MORB formed the precursor of the chlorite–actinolite rocks. They were created by low degrees of partial melting of very primitive magmas, akin to spinel-peridotites and have affinities to boninites, probably through melting of the peridotitic mantle wedge. Tholeiitic basalts and andesites with N-MORB affinity, especially in their REE-patterns, were then produced by partial melting, possibly in an embryonic back-arc basin. These rocks were the protoliths of the blueschists of Siphnos. Their enrichment in some LILE and Pb indicates a N-MORB source contaminated by marine sediments, probably shales or other Pb-rich sediments. Because the jadeite-gneisses show affinities to MOR-granites and volcanic arc granites, intrusion of their protoliths in a back-arc environment is likely. The protoliths of the quartz-jadeite gneisses are rhyodacites/dacites and rhyolites, those of the glaucophane-jadeite gneisses were andesites.

The proposed geodynamic model, solely based on geochemical data, is consistent with geochemical data from neighbouring islands, though those rock units show much higher chemical variability. Consistent with geotectonic models, which are based on structural and geophysical data, the volcanic protoliths of the Siphnos blueschist unit reflect the transition from subduction to spreading environment and record in detail: subduction, formation of an island-arc, and the evolution of a back-arc basin.  相似文献   


16.
The Palaeozoic Hodgkinson Province in northeastern Queensland, Australia, is host to Late Ordovician to Devonian rock assemblages that contain tholeiitic to calc-alkaline basalts. These basalts occur as massive fault-bounded units interspersed with marine sedimentary rocks and limestones that are metamorphosed to lower greenschist facies in the Ordovician Mulgrave, Silurian Chillagoe and Devonian Hodgkinson formations, respectively. The petrogenetic and Sm–Nd isotope characteristics of these mafic volcanic rocks were investigated to constrain the tectonic setting in which they erupted. Major, trace and rare earth element analyses were carried out on samples from these formations and intrusive dolerites. The mafic rocks can be classified as basalts and basaltic andesites with distinct MORB characteristics. Furthermore, the basalts are characterized by a slight to moderate enrichment in Th and concomitant depletion in Nb, both of which become less pronounced with basalt evolution through time. These features are consistent with decreasing volcanic arc affinity of Silurian and Devonian MORB-type basalts in the Hodgkinson Province. Sm–Nd isotope characteristics of these basalts indicate a change in source region from dominantly sub-continental lithospheric mantle in the Silurian to asthenospheric input in the Devonian. Collectively, the geochemical and isotopic characteristics of the Hodgkinson Province basalts are interpreted to reflect deposition in an evolving back-arc basin setting. The onset of basin extension was initiated in the Silurian. Accelerated basin subsidence occurred throughout the Devonian and was halted by basin inversion in the Late Devonian. Basin evolution was controlled by an eastward stepping subduction zone outboard of the Australian Craton.  相似文献   

17.
内蒙朝克山蛇绿岩地球化学: 洋内弧后盆地的产物?   总被引:8,自引:6,他引:2  
王树庆  许继峰  刘希军  侯青叶 《岩石学报》2008,24(12):2869-2879
朝克山蛇绿岩是内蒙贺根山地区出露最好的蛇绿岩之一,可能形成于中晚石炭世。朝克山蛇绿岩中的基性岩具有LREE亏损、类似N-MORB的稀土配分模式,而相对N-MORB富集大离子亲石元素,亏损Nb、Ta等高场强元素又类似岛弧火山岩的成分特征,因此,我们认为朝克山蛇绿岩应形成于弧后盆地。将朝克山蛇绿岩的基性岩与现代Mariana洋内弧后盆地和Okinawa陆缘弧后盆地的玄武岩及同属中亚造山带的、形成于洋内弧后盆地的新疆库尔提蛇绿岩对比,朝克山蛇绿岩更类似于Mariana玄武岩和库尔提蛇绿岩,因此其很可能形成于洋内弧后盆地而不是大陆边缘弧后盆地环境。  相似文献   

18.
The Alpine peridotite massif of Lanzo (Italy) contains three generations of basic dikes (gabbros and basalts). The older gabbros are plagioclase-rich mantle segregates while the younger gabbro dikes are cumulates very similar in chemical composition to recent oceanic gabbros and gabbros from ophiolitic complexes. They both were derived from the N-type mid-ocean ridge basalt (MORB) magmas which were progressively more depleted in incompatible elements and were probably generated during a dynamic melting of a rising mantle diapir. The basaltic dikes are the N-type MORB and closely resemble the Alpine-Apennine ophiolitic basalts. They were derived from a different upper mantle source than the parental magmas of the gabbros. The source of the basalts was less depleted in light REE. The presence of basic magmas with N-type MORB affinities in the Lanzo massif is consistent with the close genetic relationship between the Alpine peridotite body and the ophiolites of the Liguro-Piemontese basin.  相似文献   

19.
Geochemical studies of volcanic rocks in the Gamilaroi terrane and Calliope Volcanic Assemblage, New England Fold Belt, eastern Australia, indicate that the setting in which these rocks formed changed in both space and time. The Upper Silurian to Middle Devonian basalts of the Gamilaroi terrane show flat to slightly light rare‐earth element (LREE) depleted chondrite normalised patterns, depletion of high field strength elements (HFSE) relative to N‐MORB, low Ti/V and high Ti/Zr ratios, high Ni, Cr and large‐ion lithophile element (LILE) contents, features characteristic of intra‐oceanic island arc basaltic magmas. They are associated with low‐K, less mafic volcanics, showing moderate LREE enrichment, low Nb and Y contents and Rb/Zr ratios. The depletion of HFSE in the basalts indicates that the magmas were derived from a refractory source in a supra‐subduction zone setting. The presence of such a zone implies that the arc was associated with a backarc basin, the location of which was to the west where a wide backarc region existed from the Middle Silurian. This polarity of arc and backarc basin suggests that the subduction zone dipped to the west. In contrast to their older counterparts, Middle to Upper Devonian basalts of the Gamilaroi terrane have MORB‐like chondrite normalised patterns and higher Ti and lower LILE contents. Moreover, they have low Ti/Zr ratios and MORB‐like Ti/V ratios and HFSE contents, features typical of backarc basins. Dolerites of the Gamilaroi terrane also have predominantly backarc basin signatures. These features suggest that both the basalts and dolerites have been emplaced in an extensional environment produced during the rifting of the intra‐oceanic island arc lithosphere. A progressive increase in Ti/V ratios, and TiO2 and Fe2O3 contents at constant MgO, of stratigraphically equivalent basalts, towards the north‐northwest part of the belt, is consistent with either greater extension to the north or melting of a more fertile magma source. By contrast, basalts in the southeast part of the terrane have moderately high Ti/Zr and low Ti/V ratios and in some samples, exhibit depletion of HFSE, compositional features transitional between island arc and backarc basin basalts. The Lower to Middle Devonian mafic rocks in the Calliope Volcanic Assemblage show both LREE enriched and depleted chondrite normalised REE patterns. Further, the majority have high Ti/Zr ratios and low Zr contents as well as relatively high Th contents relative to MORB. These features are common to rocks of Middle Devonian age as well as those of Early Devonian age and are suggestive of eruption in an arc setting. Thus, the data from this study provide new evidence for the evolution of the New England Fold Belt from the Late Silurian to the Late Devonian and reveal a history more complicated than previously reported.  相似文献   

20.
Mineral chemistry, major and trace elements, and 87Sr/86Sr ratios are presented for 29 igneous rocks dredged from the northern portion of the Izu-Ogasawara arc. These rocks are compositionally bimodal. Basement gabbro and trondhjemite from the arc are extremely poor in K2O (0.05–0.19%) and Rb (0.48–0.62 ppm), and their REE patterns and Sr isotope ratios indicate that there are island arc tholeiites. Quaternary volcanic rocks from the present volcanic front (Shichito Ridge; active arc), back-arc seamounts (east side; inactive arc) and Torishima knoll between the two back-arc depressions (incipient back-arc basins) behind the active arc have the same geochemical characteristics as the above plutonic rocks though they are not as depleted in K and Rb. Rhyolite pumice from the backarc depression is also the depleted island arc tholeiite, whereas basalts from the depression have compositions that are transitional between MORB and island arc tholeiites in trace element (Ti, Ni, Cr, V, Y and Zr) and mineral chemistries. The back-arc depression basalts have relatively high BaN/CeN(0.66–1.24), Cen/YbN(1.1–1.9) and K/Ba(45–105) and low 87Sr/86Sr (0.70302–0.70332) and Ba/Sr (0.1–0.2), which are similar to other back-arc basin basalts and E-type MORB, but are quite unlike the depleted island arc tholeiites. The diverse trace element and Sr isotope compositions of basalt-andesite from the back-arc depressions imply the interplay between E-type MORB and island arc tholeiite. These chemical characteristics and the relationships of (Ce/Yb)N vs (Ba/Ce)N and (Ce/Yb)N vs 87Sr/86Sr suggest that the back-arc depression magmas are generated by mixing of E-type MORB and depleted island arc tholeiite magmas. Geochemical characters of the associated rhyolite from the depression are compatible with partial melting of lower crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号