共查询到20条相似文献,搜索用时 12 毫秒
1.
Olivier Fmnias Daniel Ohnenstetter Nicolas Coussaert Julien Berger Daniel Demaiffe 《Lithos》2005,83(3-4):347-370
The origin of magmatic layering is still hotly debated. To try to shed some light on this problem, two ultramafic–mafic layered xenoliths from Puy Beaunit (French Massif Central) were investigated in detail. The nodules belong to a stratiform intrusion emplaced in the deep crust during the Permian (257 ± 6 Ma; Féménias, O., Coussaert, N., Bingen, B., Whitehouse, M., Mercier, J.-C., Demaiffe, D., 2003. A Permian underplating event in late- to post-orogenic tectonic setting. Evidence from the mafic–ultramafic layered xenoliths from Beaunit (French Massif Central). Chem. Geol. 199 293–315.). The 3 to 5 cm thick nodules have, in common, a central orthopyroxenite layer; the succession of layers is, respectively, norite–orthopyroxenite–norite (PBN 00-01) and norite–orthopyroxenite–harzburgite (PBN 00-03). The variations of both major (by electron microprobe) and trace, essentially the RE, elements (by LA-ICP-MS) were measured in major mineral phases (orthopyroxene, clinopyroxene, plagioclase, spinel) along cross-section perpendicular to the layering. Strong grain size, chemical and textural variations occur along these sections: they can be continuous or discontinuous, symmetrical or asymmetrical. Such complex variations cannot be solely related to a single magmatic history (fractional crystallisation, mineral sorting). Other processes such as element enrichment by residual liquid channelling along layer boundaries and/or sub-solidus recrystallisation and element redistribution must be invoked. It appears, in particular, that element distribution in the central orthopyroxenite layer could result from the injection of micro-sills of orthopyroxene-rich liquid between previously consolidated layers. 相似文献
2.
《Chemical Geology》1999,153(1-4):11-35
Anhydrous mantle peridotite xenoliths from a single volcanic vent in the French Massif Central are compositionally varied, ranging from relatively fertile lherzolites to refractory harzburgites. Fertile lherzolites closely resemble previous estimates of undepleted mantle compositions but the average of the Ray Pic xenoliths is much less enriched in LILE and LREE than McDonough's (1990) average mantle [McDonough, W.F., 1990. Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett., 101, 1–18]. The wide geochemical variation in the bulk rocks reflects significant heterogeneities that can be attributed to two major processes within the shallow lithospheric mantle. The first process is depletion, related to variable degrees of partial melting and melt extraction from an originally near-chondritic mantle. This process has largely controlled the major elements and much of the trace element variation between fertile lherzolites and refractory peridotites. LREE-depleted compositions are also produced by this process. During partial melting, HREE behaved coherently with the major oxides and the moderately incompatible trace elements (Y, V and Sc). A subsequent process of enrichment is indicated by high concentrations of incompatible trace elements in many of the xenoliths. Sr, Ba, K, Th, U, Nb and LREE abundance are independent of major oxide variations and reflect enrichment related to infiltration by alkaline silicate melts/fluids. Both fertile and refractory mantle were enriched but harzburgites were particularly affected. Modal metasomatism occurred only rarely and is indicated by Cr-diopside-rich veins and patches in a few samples. Their chemistry suggests that they were also formed by migration of similar magmas/fluids from the asthenospheric mantle, although the presence of wehrlitic patches may indicate interaction with carbonate melts. In both depleted and enriched xenoliths, trace element patterns for separated clinopyroxenes closely reflect those of the bulk rock, except for Rb, Ba and Nb, which are probably hosted by other phases. 相似文献
3.
华北中、新生代岩石圈地幔的交代作用:含金云母地幔岩提供的证据 总被引:4,自引:3,他引:4
本文对华北克拉通三个不同地区(河北汉诺坝、内蒙古集宁三义堂、河南鹤壁)新发现的含金云母尖晶石二辉橄榄岩和尖晶石橄榄单斜辉石岩捕虏体进行了详细的矿物组成、单斜辉石的微量元素和Sr-Nd同位素研究.通过与相同地区不含金云母尖晶石二辉橄榄岩捕虏体的系统对比发现通常含金云母的地幔橄榄岩比不含金云母的地幔橄榄岩岩富Al2O3、CaO、NaO、K2O、TiO2,但相对贫镁;其单斜辉石的LREE更为富集,但Sr、Nd同位素组成则相对亏损.这说明地幔交代作用不仅能够造成地幔橄榄岩的玄武质组分和稀土元素的富集,而且亦能够造成全岩和橄榄石Mg#的降低和同位素组成的相对亏损.捕虏体的Rb-Sr等时线年龄暗示地幔交代作用发生在中、新生代;其交代熔体来源于软流圈.同时说明华北新生代岩石圈地幔普遍存在的主、微量元素和同位素组成类似于“大洋型”岩石圈地幔的特征很可能是岩石圈地幔橄榄岩与软流圈来源的熔体的大规模反应的结果,而非真正意义上的新增生的岩石圈地幔. 相似文献
4.
In situ trace element analyses of constituent minerals in mantle xenoliths occurring in an alnöite diatreme and in nephelinite plugs emplaced within the central zone of the Damara Belt have been determined by laser ablation ICP-MS. Primitive mantle-normalized trace element patterns of clinopyroxene and amphibole indicate the presence of both depleted MORB-like mantle and variably enriched mantle beneath this region. Clinopyroxenes showing geochemical depletion have low La/Smn ratios (0.02–0.2), whereas those showing variable enrichment have La/Smn ranging up to 3.8 and La/Ybn to 9.1. The most enriched clinopyroxenes coexist with amphibole showing similar REE patterns (La/Smn = 1.3–4.1; La/Ybn = 4.5–9). Primitive mantle-normalized trace element patterns allow further groups to be distinguished amongst the variably enriched clinopyroxenes: one having strong relative depletion in Rb–Ba, Ta–Nb and relative enrichment in Th–U; another with similar characteristics but with additional strong relative depletion in Zr–Hf; and one showing no significant anomalies. Amphiboles show similar normalized trace element patterns to co-existing clinopyroxene. Clinopyroxene and amphiboles showing LREEN enrichment have high Sr and low Nd isotope ratios compared to clinopyroxene with LREE-depleted patterns. Numerical simulation of melt percolation through the mantle via reactive porous flow is used to show that the chromatographic affect associated with such a melt migration process is able to account for the fractionation seen in La–Ce–Nd in cryptically metasomatized clinopyroxenes in Type 1 xenoliths, where melt–matrix interactions occur near the percolation front, whereas REE patterns in clinopyroxenes proximal to the source of metasomatic melt/fluid match those found in modally metasomatized Type 2 xenoliths. The strong fractionation between Rb–Ba, Th–U and Ta–Nb shown by some cryptically metasomatized xenoliths can be also accounted for by reactive porous flow, provided amphibole crystallizes from the percolating melt/fluid close to its source. The presence of amphibole in vein-like structures in some xenoliths is consistent with this interpretation. The strong depletion in Zr–Hf in clinopyroxene and amphibole in some xenoliths cannot be accounted for by melt migration processes and requires metasomatism by a separate carbonate-rich melt/fluid. When taken together with published isotope data on these same xenoliths, the source of metasomatic enrichment of the previously depleted (MORB-like) sub-Damaran lithospheric mantle is attributed to the upwelling Tristan plume head at the time of continental breakup. 相似文献
5.
Mohamed Chakib Lahmer Abdelmadjid Seddiki Mohamed Zerka Jean-Yves Cottin Mohammed Tabeliouna 《Arabian Journal of Geosciences》2018,11(12):332
A spinel ± amphibole ± feldspar bearing Iherzolites, a spinel ± amphibole ± feldspar bearing harzburgites, and a spinel ± amphibole ± phlogopite bearing wehrlites are metasomatized peridotitic mantle xenoliths from Ain Temouchent volcanic complex (North-West Algeria). These xenoliths are metamorphic/deformed rocks with a strong planar fabric typical of mantle tectonites. The wehrlites are not the result of a simple model of partial melting. The spinel ± amphibole ± feldspar bearing harzburgites and lherzolites exhibit asymmetric concave-shaped REE patterns. These indicate that an earlier partial melting event was followed by metasomatic processes. The wehrlites have higher REE concentrations and LREE/HREE fractionations, indicating a sequential evolution of wehrlites from previous refractory material with melting as an addition process. This process reflects the interaction of the lithospheric mantle beneath the Ain Temouchent area with basaltic melt. Metasomatism is expressed by the formation of amphibole, phlogopite, and increased abundances of clinopyroxene at the expense of orthopyroxene, in lherzolite and harzburgite. In the Ain Temouchent area, metasomatizing agents are Na-alkali silicates. The similarities observed between the glasses studied in this paper, and the basaltic host rocks of the Ain Temouchent area, may suggest a common mantle source, or with chemical similarities but with relatively different evolutions pathways. The formation of glass in wehrlites from the Ain Temouchent area has an origin formed by the breakdown of amphibole or phlogopite as a result of decompressional melting and production of silica-undersaturated glasses. The glass reacts with essentially orthopyroxene to produce silica-rich glasses. This study has contributed to highlighting a relationship between glass, and the processes that caused the formation of metasomatic phases. 相似文献
6.
Trap Pierre Roger Françoise Cenki-Tok Bénédicte Paquette Jean-Louis 《International Journal of Earth Sciences》2017,106(2):453-476
International Journal of Earth Sciences - Unravelling the detailed pressure–temperature–time-deformation (P–T–t-D) evolution of magmatic and metamorphic rocks provides... 相似文献
7.
Julien Berger Olivier Féménias Nicolas Coussaert Jean-Claude C. Mercier Daniel Demaiffe 《Contributions to Mineralogy and Petrology》2007,153(5):557-575
Ultramafic and mafic xenoliths of magmatic origin, sampled in the Beaunit vent (northern French Massif Central), derive from
the Permian (257 Ma) Beaunit layered complex (BLC) that was emplaced at the crust-mantle transition zone (∼1 GPa). These plutonic
xenoliths are linked to a single fractional crystallisation process in four steps: peridotitic cumulates; websteritic cumulates;
Al-rich mafic cumulates (plagioclase, pyroxenes, garnet, amphibole and spinel) and finally low-Al mafic cumulates. This sequence
of cumulates can be related to the compositional evolution of hydrous Mg basaltic magma that evolved to high-Al basalt and
finally to andesitic basalt. Sr and Nd isotopic compositions confirm the co-genetic character of the various magmatic xenoliths
and argue for an enriched upper mantle source comparable to present mantle wedges above subduction zones. LILE, LREE and Pb
enrichment are a common feature of all xenoliths and argue for an enriched sub-alkaline transitional parental magma. The existence
of a Permian magma chamber at 30 km depth suggests that the low-velocity zone observed locally beneath the Moho probably does
not represent an anomalous mantle but rather a sequence of mafic/ultramafic cumulates with densities close to those of mantle
rocks. 相似文献
8.
In the Northern part of the Variscan French Massif Central, the Sioule series, from top to bottom, consists of a pre-Viséan granite, migmatite, gneiss and mica schist. Two ductile deformations have been recognized. The earlier phase is characterized by a north-east-south-west trending stretching lineation; the second phase, characterized by a north-west-south-east trending mineral, stretching and crenulation lineation, is better marked in the lower mica schist part than in the upper granito-gneissic part. This second phase occurred during retrogression of the metamorphic rocks; related shear criteria indicate a top to the south-west shear. The Namurian-Westphalian magmatic bodies such as the Echassières leucogranite, Pouzol-Servant microgranite and numerous north-east -south-west trending microgranite dykes are emplaced in extensional fractures related to the same north-west-south-east maximum stretching direction. The asymmetrical shapes of the two granitic massifs indicate that they intruded towards the south-east. The synkinematic retrogression of the metamorphic rocks, the shape of the magmatic bodies and a re-examination of the numerous available data support the interpretation that the deformation is due to the extensional tectonic regime related to the Variscan crustal re-quilibration. This interpretation is in agreement with the correlation of the Sioule series with the Chavanon series. The two series belong to a unique tectono-metamorphic unit left-laterally offset by the Stephanian motion of the Sillon Houiller fault. This study also shows that the Sillon Houiller did not play a significant part during the Namurian-Westphalian extensional tectonics of the Massif Central.
Correspondence to: M. Faure 相似文献
9.
We have carried out a Pb double-spike and Lu-Hf isotope study of clinopyroxenes from spinel-facies mantle xenoliths entrained in Cenozoic intraplate continental volcanism of the French Massif Central (FMC). U-Th-Pb and Lu-Hf isotope systematics verify the existence of different lithospheric domains beneath the northern and southern FMC. Northern FMC clinopyroxenes have extreme Lu/Hf ratios and ultra-radiogenic Hf (εHf = +39.6 to +2586) that reflect ∼15-25% partial melting in Variscan times (depleted mantle model ages ∼360 Ma). Zr, Hf and Th abundances in these clinopyroxenes are low and unaffected by hydrous/carbonatitic metasomatism that overprinted LILE and light REE abundances and caused decoupling of Lu/Hf-Sm/Nd ratios and Nd-Hf isotopes (εNd = +2.1 to +91.2). Pb isotopes of northern FMC clinopyroxenes are radiogenic (206Pb/204Pb > 19), and typically more so than the host intraplate volcanic rocks. 238U/204Pb ratios range from 17 to 68, and most samples have distinctively low 232Th/238U (<1) and 232Th/204Pb (3-22). Clinopyroxenes from southern FMC lherzolites are generally marked by overall incompatible trace element enrichment including Zr, Hf and Th abundances, and have Pb isotopes that are similar to or less radiogenic than the host volcanic rocks. Hf isotope ratios are less radiogenic (εHf = +5.4 to +41.5) than northern FMC mantle and have been overprinted by silicate-melt-dominated metasomatism that affected this part of FMC mantle. Major element and Lu concentrations of clinopyroxenes from southern FMC harzburgites are broadly similar to northern FMC clinopyroxenes and suggest they experienced similar degrees of melt extraction as northern FMC mantle. 238U/204Pb (53-111) and 232Th/204Pb ratios (157-355) of enriched clinopyroxenes from the southern FMC are extreme and significantly higher than the intraplate volcanic rocks. In summary, mantle peridotites from different parts of the FMC record depletion at ∼360 Ma during Variscan subduction, followed by differing styles of enrichment. Northern FMC mantle was overprinted by a fluid/carbonatitic metasomatic agent that carried elements like U, Pb, Sr and light REE. In contrast, much of the southern FMC mantle was metasomatised by a small-degree partial silicate melt resulting in enrichment of all incompatible trace elements. The extreme mantle 238U/204Pb (northern and southern FMC), 232Th/238U (northern FMC) and 232Th/204Pb ratios (southern FMC), coupled with unremarkable present-day Pb isotope ratios, constrain the timing of enrichment. Mantle metasomatism is a young feature related to melting of the upwelling mantle responsible for Cenozoic FMC volcanism, rather than subduction-related metasomatism intimately associated with mantle depletion during the Variscan orogeny. The varying metasomatic styles relate to pre-existing variations in the thickness of the continental lithospheric lid, which controlled the extent to which upwelling mantle could ascend and melt. In the northern FMC, a thicker and more refractory lithospheric lid (?80 km) only allowed incipient degrees of melting resulting in fluid/carbonatitic metasomatism of the overlying sub-continental lithospheric mantle. The thinner lithospheric lid of the southern FMC (?70 km) allowed larger degrees of melting and resulted in silicate-melt-dominated metasomatism, and also focused the location of the volcanic fields of the FMC above this region. 相似文献
10.
J. BERGER O. FEMENIAS J. C. C. MERCIER D. DEMAIFFE 《Journal of Metamorphic Geology》2005,23(9):795-812
The Limousin ophiolite is located at the suture zone between two major thrust sheets in the western French Massif Central. This ophiolitic section comprises mantle‐harzburgite, mantle‐dunite, wehrlites, troctolites and layered gabbros. It has recorded a static metamorphic event transforming the gabbros into undeformed amphibolites and the magmatic ultramafites into serpentinites and/or pargasite‐bearing chloritites. With various thermobarometric methods, it is possible to show that the different varieties of amphibole have registered low‐P (c. 0.2 GPa) conditions with temperature ranging from high‐T, late‐magmatic conditions to greenschist–zeolite metamorphic facies. The abundance of undeformed metamorphic rocks (which is typical of the lower oceanic crust), the occurrence of Ca–Al (–Mg) metasomatism illustrated by the growth of Ca–Al silicates in veins or replacing the primary magmatic minerals, the P–T conditions of the metamorphism and the numerous similarities with oceanic crustal rocks from Ocean Drilling Program and worldwide ophiolites are the main arguments for an ocean‐floor hydrothermal metamorphism in the vicinity of a palaeo‐ridge. Among the West‐European Variscan ophiolites, the Limousin ophiolites constitute an extremely rare occurrence that has not been involved in any HP (subduction‐related) or MP (orogenic) metamorphism as observed in other ophiolite occurrences (i.e. France, Spain and Germany). 相似文献
11.
Luigi Beccaluva Gianluca Bianchini Massimo Coltorti William Perkins Franca Siena Carmela Vaccaro Marjorie Wilson 《Contributions to Mineralogy and Petrology》2001,142(3):284-297
Peridotite xenoliths entrained in Plio-Pleistocene alkali basalts from Sardinia represent fragments of the uppermost lithospheric mantle, and are characterised by an anhydrous four-phase mineral assemblage. They range in bulk rock composition from fertile spinel-lherzolites to residual spinel-harzburgites. The Sr-Nd isotope and trace element composition of clinopyroxene mineral separates varies between LREE-depleted samples with 87Sr/86Sr as low as 0.70262 and 143Nd/144Nd up to 0.51323 and LREE-enriched samples with 87Sr/86Sr up to 0.70461 and 143Nd/144Nd down to 0.51252. The available data suggest that all the studied peridotite samples suffered variable degrees of partial melting during Pre-Mesozoic times (based on Nd model ages relative to CHUR and DMM). The overprinted enrichment is related to a subsequent metasomatism, induced by fluids rising through the lithosphere that preferentially percolated the originally most depleted domains. Despite the occurrence of orogenic volcanism in the area, preferential enrichment in elements typically associated with slab derived fluids/melts (K, Rb, Sr, Th) relative to LREE has not been detected, and metasomatism seems to be more likely related to the infiltration of highly alkaline basic melts characterised by an EM-like Sr-Nd isotopic composition. Similar 87Sr/86Sr-143Nd/144Nd compositions, characterised by an EM signature, are observed in anorogenic mafic lavas and peridotite xenoliths from widespread localities within the "European" plate, whereas they have not previously been recorded in peridotite xenoliths and associated alkaline mafic lavas from the stable "African" lithospheric domain. 相似文献
12.
Jean-Pierre Lorand Olivier Alard Ambre Luguet 《Geochimica et cosmochimica acta》2003,67(21):4137-4151
Selenium has been analyzed in addition to S in 58 spinel peridotite xenoliths collected in Cenozoic alkali basalts from the Massif Central (France). The S concentration range now available for this suite, calculated from 123 samples, is the largest ever reported for alkali basalt-hosted xenoliths (<3-592 ppm). Likewise, the Se concentrations range between 0.2 and 67 ppb. No partial melting signature can be identified from the S and Se systematic. Half of the analyzed xenoliths have lost S during supergene weathering. By contrast, neither surficial alteration, nor loss of chalcophile elements during eruption can explain the regional-scale variations of S and Se concentrations. A first group of lherzolite xenoliths sampled in Southern Massif Central, from volcanic centers older and spatially unrelated to the Massif Central plume that triggered the Cenozoic volcanism, contains between 20 and 250 ppm S (with occasional S concentrations up to 592 ppm) and 12-67 ppb Se. It is clear that the highest S values, originally interpreted as representing S abundances in the primitive mantle, were in fact enriched by metasomatism. Highly variable S and Se contents (<5-360 ppm; 9-52 ppb) have also been observed in peridotite xenoliths collected in the Northern Massif Central, from volcanic centers mostly older than the plume. Like Group I xenoliths, these Group II xenoliths were strongly metasomatized by volatile-rich carbonated/silicated melts which precipitated Cu-rich sulfides. A third group of xenoliths from Plio-Quaternary basalts spatially related to the Massif Central Plume are uniformly poor in S (10-60 ppm) and Se (9-29 ppb). In this Group III, poikiloblastic textured xenoliths have lost most of their S and Se budget by peridotite-melt interactions at high melt/rock ratios. Taken as a whole, the Massif Central xenolith suite provides further evidence for strong heterogeneities in the S and Se budget of the sub-continental lithospheric mantle. However, the few LREE-depleted fertile lherzolites that escaped strong metasomatic alterations suggest a S- and Se-depleted primitive mantle reservoir compared to currently accepted primitive mantle estimates. 相似文献
13.
In the biotite-sillimanite and biotite-sillimanite-cordierite gneisses from the Haut Allier (French Massif Central), the biotite grains are partially melted: they are embayed and replaced by an isotropic material associated with metallic oxides. The complete study of this glass by optical microscopy, Raman spectroscopy, electronic microanalysis and X-Ray diffraction was performed: the glassy state is well established (locally some very fine kaolinite crystals are present in the glass as hydrothermal reconstruction). This glass results from the incongruent melting of biotite. The alumino-silicate melt corroded the preexistent quartz and feldspar grains. Anhydrous phases crystallized from this melt: successively sillimanite-cordierite and quartz. Correlatively, the melt must have become water-saturated and a new highly hydrated fluid phase should then have coexisted with it. Potassium and silicium, together with water, may have been components of the relatively mobile hydrous phase and this one may have been responsible for some hydration reactions such as muscovitization of feldspars. The petrological implications must be emphasized: in the studied gneisses, biotite cannot be considered as a resister. In fact, biotite melts and this melting is probably an important agent of the regional anatexis. 相似文献
14.
The late Cretaceous lithospheric mantle beneath the Central Andes: Evidence from phase equilibria and composition of mantle xenoliths 总被引:3,自引:0,他引:3
Temperature estimates and chemical composition of mantle xenoliths from the Cretaceous rift system of NW Argentina (26°S) constrain the rift evolution and chemical and physical properties of the lithospheric mantle at the eastern edge of the Cenozoic Andean plateau. The xenolith suite comprises mainly spinel lherzolite and subordinate pyroxenite and carbonatized lherzolite. The spinel lherzolite xenoliths equilibrated at high-T (most samples >1000 °C) and P below garnet-in. The Sm–Nd systematics of compositionally unzoned clino- and orthopyroxene indicate a Cretaceous minimum age for the high-T regime, i.e., the asthenosphere/lithosphere thermal boundary was at ca. 70 km depth in the Cretaceous rift. Major elements and Cr, Ni, Co and V contents of the xenoliths range between values of primitive and depleted mantle. Calculated densities based on the bulk composition of the xenoliths are <3280 kg/m3 for the estimated P–T conditions and indicate a buoyant, stable upper mantle lithosphere. The well-equilibrated metamorphic fabric and mineral paragenesis with the general lack of high-T hydrous phases did not preserve traces of metasomatism in the mantle xenoliths. Late Mesozoic metasomatism, however, is obvious in the gradual enrichment of Sr, U, Th and light to medium REE and changes in the radiogenic isotope composition of an originally depleted mantle. These changes are independent of the degree of depletion evidenced by major element composition. 143Nd/144Ndi ratios of clinopyroxene from the main group of xenoliths decrease with increasing Nd content from >0.5130 (depleted samples) to ca. 0.5127 (enriched samples). 87Sr/86Sri ratios (0.7127–0.7131, depleted samples; 0.7130–0.7134, enriched samples) show no variation with variable Sr contents. Pbi isotope ratios of the enriched samples are rather radiogenic (206Pb/204Pbi 18.8–20.6, 207Pb/204Pbi 15.6–15.7, 208Pb/204Pbi 38.6–47) compared with the Pb isotope signature of the depleted samples. The large scatter and high values of 208Pb/204Pbi ratios of many xenoliths indicates at least two Pb sources that are characterized by similar U/Pb but by different Th/Pb ratios. The dominant mantle type in the investigated system is depleted mantle according to its Sr and Nd isotopic composition with relatively radiogenic Pb isotope ratios. This mantle is different from the Pacific MORB source and old subcontinental mantle from the adjacent Brazilian Shield. Its composition probably reflects material influx into the mantle wedge during various episodes of subduction that commenced in early Paleozoic or even earlier. Old subcontinental mantle was already replaced in the Paleozoic, but some inheritance from old mantle lithosphere is represented by rare xenoliths with isotope signatures indicating a Proterozoic origin. 相似文献
15.
16.
The Massif Central, like the southern part of the Massif Armoricain, belongs to the north Gondwana margin. The Massif Central consists of a stack of nappes resulting from six main tectonic-metamorphic events. The first, D0, is coeval with a Late Silurian (ca 415 Ma) high-pressure (HP) (or ultra high-pressure) metamorphism for which the associated structures are poorly documented. The Early Devonian D1 event, responsible for top-to-the-southwest nappe displacement, is coeval with migmatization and the exhumation of HP rocks around 385–380 Ma. In the northern part of the Massif Central, metamorphic rocks with retrogressed eclogites are covered by Late Devonian undeformed sedimentary rocks. The Late Devonian-Early Carboniferous D2 event involves top-to-the-northwest shearing, coeval with an intermediate pressure-temperature metamorphism dated around 360–350 Ma. The Visean D3 event is a top-to-the-south ductile shearing, which is widespread in the southern Massif Central. Coevally, in the northern Massif Central, the D3 event corresponds to the onset of synorogenic extension. The next two events, D4 and D5, of Early and Late Carboniferous age, correspond to the syn- and late orogenic extensional tectonic regimes, respectively. The former is controlled by NW–SE stretching whereas the latter is accommodated by NNE–SSW stretching. These structural and metamorphic events are reconsidered in a geodynamic evolution model. The possibilities of one or two cycles involving microcontinent drifting, rewelding and collision are discussed. 相似文献
17.
Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes 总被引:1,自引:3,他引:1
Esmé van Achterbergh William L. Griffin Johann Stiefenhofer 《Contributions to Mineralogy and Petrology》2001,141(4):397-414
A suite of metasomatised xenoliths from the Letlhakane kimberlite (Botswana) forms a metasomatic sequence from garnet peridotite to garnet phlogopite peridotite to phlogopite peridotite. Before the modal metasomatism, most of the Letlhakane xenoliths were depleted harzburgites that had been subjected to an earlier cryptic metasomatic event. Modal phlogopite and clinopyroxene - Cr-spinel increase at the expense of garnet and orthopyroxene with increasing degrees of metasomatism. The most metasomatised xenolith is a wehrlite. With progressive modal metasomatism, the clinopyroxene becomes enriched in Sr, Sc and the LREE, orthopyroxene becomes depleted in Ca and Ni, but enriched in Al and Mn, and olivine becomes depleted in Al and V. Garnet chemical composition largely remains unchanged. The garnet replacement reaction seen in most xenoliths allows the measurement of the flux of trace elements through detailed modal analysis of the pseudomorphs. Mass balance calculations show that the modally metasomatised rocks became enriched in incompatible elements such as Sr, Na, K, the LREE and the HFSE (Ti, Zr and Nb). Major elements (Al, Cr and Fe) and garnet-compatible trace elements (V, Y, Sc, and the HREE) were removed during this metasomatic process. The modal metasomatism caused a strong depletion in Al, and the results challenge previous suggestions that this metasomatic process merely occurred within an Al-poor environment. The data suggest that the xenoliths represent the mantle wallrock adjacent to a major conduit for an alkaline basic silicate melt (with high contents of volatile and incompatible elements). The volatile and incompatible element-enriched component of this melt percolated into the wallrock along a strong temperature gradient and caused the observed range of metasomatism. 相似文献
18.
V. GARDIEN M. TEGYEY J. M. LARDEAUX M. MISSERI E. DUFOUR 《Journal of Metamorphic Geology》1990,8(5):477-492
Garnet lherzolite from the Lyonnais area (eastern French Massif Central) occurs as several lenses elongated within the regional foliation of garnet-biotite-sillimanite gneisses. Within the peridotites a mylonitic foliation can be observed which clearly is oblique to the regional foliation of the surrounding gneisses. Petrological and thermobarometric studies emphasize a tectonometamorphic re-equilibration for both crustal and mantle rocks characterized by a prograde metamorphic stage followed by retrograde evolution. During the burial stage, interpreted as lithospheric subduction, the peridotites underwent their mylonitic deformation, under high-pressure conditions (23–30 kbar). In contrast, the paragneisses have suffered their deformation during the retromorphic evolution under mesozonal conditions (6–8 kbar, 700°C). Our thermobarometric investigations allow us to interpret the granulitic/ultramafic association from the Monts du Lyonnais area as a lithospheric section buried into a Palaeozoic subduction zone, laminated during continental collision and uplifted by erosion processes. 相似文献
19.
Yan Chen Bernard Henry Michel Faure Jean-François Becq-Giraudon Jean-Yves Talbot Lucien Daly Maxime Le Goff 《International Journal of Earth Sciences》2006,95(2):306-317
In order to assess the structural evolution of the Brive basin and the Paleozoic activity of surrounding major faults in the French Massif Central, we carried out a paleomagnetic study on Early Permian rocks from this basin. Positive-fold tests and solely reversed polarities indicate that the characteristic remanent magnetization is likely to be primary. Early Permian tilt-corrected site mean declinations vary from 207°–167° indicating that the Brive basin experienced internal vertical-axis rotations. On the contrary, Late Permian paleomagnetic site means exhibit a circular Fisherian distribution showing no relative rotations. Detailed analyses of Permian paleomagnetic data from five contemporaneous basins of the French Massif Central reveal that these basins share the same equatorial paleolatitude with stable Europe throughout the Permian. However, in Early Permian, three of the five basins experienced differential rotations. The Saint-Affrique basin not only suffered internal deformation during the Early Permian, but the basin as a whole underwent a full-scale counterclockwise vertical-axis block rotation with respect to stable Europe. As a consequence, paleomagnetic data from similar late orogenic basins have to be thus carefully considered for establishment of Apparent Polar Wander paths. 相似文献
20.
《Geochimica et cosmochimica acta》2001,65(16):2789-2806
Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (<2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/YbN < 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature. 相似文献