共查询到20条相似文献,搜索用时 15 毫秒
1.
地下多组分反应溶质运移数值模拟:地质资源和环境研究的新方法 总被引:1,自引:0,他引:1
地下多组分反应溶质运移数值模拟(RTM)是解释地球系统中的耦合过程和不同时空尺度对其影响的重要工具。RTM是研究地球科学基础理论、地质资源和环境等复杂地球化学过程的一个新方法,可用于如废物处置安全性评估、地下水污染研究、二氧化碳地质储存、金属矿床的地浸开采等的研究中。笔者首先回顾了反应溶质溶质运移模拟的发展历史,然后总结了反应溶质运移模拟的发展现状,再从耦合过程、空间尺度、裂隙和非均质介质处理角度说明了反应溶质运移模拟所面临的挑战。结合地下水质的演化、生物降解、CO2地质储存等具体实例讨论了反应溶质运移模拟的广泛应用前景,探讨了反应溶质运移模拟的未来发展方向。 相似文献
2.
Uncertainty quantification for subsurface flow problems is typically accomplished through model-based inversion procedures in which multiple posterior (history-matched) geological models are generated and used for flow predictions. These procedures can be demanding computationally, however, and it is not always straightforward to maintain geological realism in the resulting history-matched models. In some applications, it is the flow predictions themselves (and the uncertainty associated with these predictions), rather than the posterior geological models, that are of primary interest. This is the motivation for the data-space inversion (DSI) procedure developed in this paper. In the DSI approach, an ensemble of prior model realizations, honoring prior geostatistical information and hard data at wells, are generated and then (flow) simulated. The resulting production data are assembled into data vectors that represent prior ‘realizations’ in the data space. Pattern-based mapping operations and principal component analysis are applied to transform non-Gaussian data variables into lower-dimensional variables that are closer to multivariate Gaussian. The data-space inversion is posed within a Bayesian framework, and a data-space randomized maximum likelihood method is introduced to sample the conditional distribution of data variables given observed data. Extensive numerical results are presented for two example cases involving oil–water flow in a bimodal channelized system and oil–water–gas flow in a Gaussian permeability system. For both cases, DSI results for uncertainty quantification (e.g., P10, P50, P90 posterior predictions) are compared with those obtained from a strict rejection sampling (RS) procedure. Close agreement between the DSI and RS results is consistently achieved, even when the (synthetic) true data to be matched fall near the edge of the prior distribution. Computational savings using DSI are very substantial in that RS requires \(O(10^5\)–\(10^6)\) flow simulations, in contrast to 500 for DSI, for the cases considered. 相似文献
3.
Mathematical Geosciences - 相似文献
4.
5.
6.
7.
Dispersive mass transport processes in naturally heterogeneous geological formations (porous media) are investigated based on a particle approach to mass transport and on its numerical implementation using LPT3D, a Lagrangian Particle Tracking 3D code. We are currently using this approach for studying microscale and macroscale space–time behavior (advection, diffusion, dispersion) of tracer plumes, solutes, or miscible fluids, in 1,2,3-dimensional heterogeneous and anisotropic subsurface formations (aquifers, petroleum reservoirs). Our analyses are based on a general advection-diffusion model and numerical scheme where concentrations and fluxes are discretized in terms of particles. The advection-diffusion theory is presented in a probabilistic framework, and in particular, a numerical analysis is developed for the case of advective transport and rotational flows (numerical stability of the explicit Euler scheme). The remainder of the paper is devoted to the behavior of concentration, mass flux density, and statistical moments of the transported tracer plume in the case of heterogeneous steady flow fields, where macroscale dispersion occurs due to geologic heterogeneity and stratification. We focus on the case of perfectly stratified or multilayered media, obtained by generating many horizontal layers with a purely random transverse distribution of permeability and horizontal velocity. In this case, we calculate explicitly the exact mass concentration field C(x,
t), mass flux density field f(x, t), and moments. This includes spatial moments and dispersion variance 2
x
(t) on a finite domain L, and temporal moments on a finite time scale T, e.g., the mass variance of arrival times 2
T
(x). The moments are related to flux concentrations in a way that takes explicitly into account finite space–time scales of analysis (time-dependent tracer mass; spatially variable flow through mass). The multilayered model problem is then used in numerical experiments for testing different ways of recovering information on tracer plume migration, dispersion, concentration and flux fields. Our analyses rely on a probabilistic interpretation that emerges naturally from the particle approach; it is based on spatial moments (particle positions), temporal moments (mass weighted arrival times), and probability densities (both concentrations and fluxes). Finally, as an alternative to direct estimations of the flux and concentration fields, we formulate and study the Moment Inverse Problem. Solving the MIP yields an indirect method for estimating the space–time distribution of flux concentrations based on observed or estimated moments of the plume. The moments may be estimated from field measurements, or numerically computed by particle tracking as we do here. 相似文献
8.
Mathematical Geosciences - Machine-learning-based proxy models are often used to replace many of the flow simulations required in optimizations of subsurface flow processes. Because the optimizer... 相似文献
9.
10.
11.
12.
13.
针对表面活性剂强化的重非水相流体(DNAPLs)污染的含水层修复问题,在建立多相流数值模拟模型的基础上,应用拉丁超立方采样(LHS)方法,在多相流模拟模型可控输入变量的可行域内采样,有效提高了采样效率和覆盖程度。根据采集的样品数据集,运用多元回归分析方法建立多相流模拟模型的替代模型--双响应面模型,为DNAPLs污染含水层修复过程的优化设计的耦合技术探索新的理论和方法。经检验,替代模型计算结果的相对误差均小于10%,精度较高,说明其在功能上充分逼近模拟模型。运用替代模型实现模拟模型与优化模型的连接,可以大幅度减少优化模型计算过程中直接多次反复调用模拟模型所引起的庞大计算负荷。 相似文献
14.
非均质含水层中渗流与溶质运移研究进展简 总被引:1,自引:0,他引:1
Natural aquifer heterogeneity controls the groundwater flow and solute transport, and how to accurately quantify the flow and solute transport in heterogeneous aquifers has received wide attention by many scholars, and has become a hot research topic in earth science. Theoretically, a systematic review is given by the following aspect: flow and solute transport model, moment analysis, multi scale analysis. The resolved and remained issues for scale conversion in hydrogeology research are pointed out. Secondly, recent advances of heterogeneous field test, uncertainty and velocity connectivity are analyzed. Finally, the geophysical inversion of aquifer heterogeneity, stochastic theory and development of stochastic simulation software, scale conversion and uncertainty of velocity connectivity, and the relationship between heterogeneity and hydrogeological condition on the major four aspects of the future research direction is pointed out. 相似文献
15.
16.
17.
Mathematical Geosciences - In this study, a sand-tank model as a physical analog of a real-world aquifer is presented for groundwater instruction. The sand tank is used for introducing flow nets... 相似文献
18.
Current designs for nuclear-waste repositories rely primarily upon subsurface geologic barriers for long-term containment. Because water and air are generally considered to be the mechanisms most likely to transport radioactivity to the surface environment, flow and transport models are important tools in repository assessment. Most models assume that the geologic medium can be treated as a continuum. A substantial body of recent work has focused on applying these models to difficult-to-solve problems, such as the simulation of variably dense or variably saturated flow and transport, large and complex flow systems, sharp solute concentration fronts, and fractured rock systems. The complex chemical interactions between the transport fluid and solid particles within the system have been analyzed using geochemical flow models, most of which assume that the system is at chemical equilibrium. The role of colloids in contaminant transport is a relatively new area of research. The large-scale effects of small-scale variability within the geologic system have been the subject of intense investigation. Inherent limitations of the continuum approach have prompted the design of models in which the flow occurs in discrete fractures. The difficulty and complexity of simulating transport has led to the development of network transport models, which represent the flow field as a series of 1-D path segments. The widespread use of models for prediction and analysis has prompted investigations of their reliability and relative merits. 相似文献
19.
The paper deals with numerical simulation techniques for forward and inverse modelling in multiphase (multicomponent) flow through porous media. The forward simulation software system MUFTE-UG uses recent discretization techniques and fast solvers. The efficient integration of optimization strategies for the solution of the inverse problems is demonstrated in detail and also applied to practical numerical examples. 相似文献
20.
采用亮蓝FCF染色示踪剂, 研究膜下滴灌条件的水盐运移规律; 分别在灌溉前、灌溉中和灌溉后等不同时间段共开挖13个时刻的剖面, 观察膜下滴灌湿润面的运移情况; 以10 cm间隔的网格, 用MP406土壤水分探测器原位测定3 120个点的土壤体积含水率, 同时取1 430份土样, 利用1∶5土水比浸提法测定土壤盐分; 并利用WATCHDOG气象站监测研究区气象要素.结果表明: 染色示踪能直观表征土壤水盐运动轨迹; 膜下滴灌条件下, 垂直滴灌带方向土壤水流呈点源入渗特征、沿滴灌带方向近似呈线源入渗特征; 现行灌溉模式下, 壤质砂土湿润锋横向运移速率约为8 cm/h; 滴灌对滴头附近土体有一定洗盐效果, 未覆膜区域地表土体出现盐分积累; 灌水时间越长, 湿润锋越深, 横向扩展速率接近无作物小区(8 cm/h); 从土壤水合理利用角度考虑, 满足研究区一膜一带四行的种植模式和土质的单次合理灌水量应为29.4~69.8 mm. 相似文献