首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
基于有限差分强度折减法的略阳电厂边坡稳定性分析   总被引:2,自引:0,他引:2  
将强度折减理论应用于边坡稳定性分析中,借助FLAC/SLOPE有限差分分析程序,选择弹塑性Mohr-Coulomb模型及其破坏准则,以大唐略阳电厂边坡作为工程实例,分析了该边坡的稳定性,并与传统的Bishop法、Janbu法等方法计算所得边坡稳定系数进行了对比分析。结果表明,有限差分强度折减法能更加真实地反映边坡的实际情况,求得的边坡稳定系数更接近边坡的实际稳定状态,显示出其在边坡稳定性分析中的一定优势。  相似文献   

2.
在强度参数坐标系中,借助强度储备面积的概念,推导出双折减法的边坡安全系数表达式,其具有理论支持,且与已有的关系式相比未产生较大的偏差,意义更明确。在基于折减比K实现的双强度折减法中,相同的K值,采用不同的数学表达式,将产生不同的折减起步方式,由此出现了不同的虚拟初始点。严格意义上讲,两种方式折减路径确有不同,但结果表明,虚拟初始点的不同所导致的2种折减路径,本质上具有统一性,不会对结果产生影响,建议选取较短的路径,可以减少折减次数;双折减法由于在路径上与传统折减法有所区别,而仅与传统强度折减法计算结果进行偏差分析,难免出现结果失真。围绕强度弱化的本质,提出2个判断标准,一是应满足数值精度的要求,另一个则是必须符合客观事实,即强度折减必须体表现出强度弱化的概念。  相似文献   

3.
将有限元强度折减理论应用于边坡稳定性分析中,运用ANSYS大型有限元分析软件,基于Drucker-Prager(D-P)屈服准则,采用力和位移的收敛标准作为破坏判据,进行边坡的稳定性分析。当折减系数达到某一数值时,非线性有限元静力计算将不收敛,滑面上的位移将产生突变,边坡内一定幅值的广义剪应变自坡底向坡顶贯通,此时认为边坡已破坏,并定义此时的折减系数即为稳定系数。文中以韩城煤矿节理岩质边坡为例,运用该方法进行了稳定性分析并与并与传统的Bishop法、Janbu法等方法对比。计算结果表明,有限元强度折减法能更加真实地反映边坡的实际情况,求得的边坡稳定系数更接近边坡的实际稳定状态,显示出其在边坡稳定性分析中的一定优势。  相似文献   

4.
基于Hoek-Brown准则的三维边坡变形稳定性分析   总被引:1,自引:0,他引:1  
林杭  曹平  李江腾  江学良  何忠明 《岩土力学》2010,31(11):3656-3660
采用Hoek-Brown准则,分析三维边坡在开挖扰动下的变形稳定性。以某露天矿边坡为工程背景,利用快速拉格朗日差分法(FLAC3D)建立三维数值分析模型,并在边坡中布置若干监测点,利用FISH语言编制相应位移插值程序,探讨边坡开挖引起的动静态位移响应,从宏观角度揭示出边坡开挖后,不同区域的变形,为工程实践提供指导;介绍了强度折减技术在Hoek-Brown准则中的实施方法,采用计算不收敛失稳判据,计算边坡安全系数,从而进一步推广Hoek-Brown强度折减法在三维边坡稳定性分析中的应用。  相似文献   

5.
基于离散元的强度折减法分析岩质边坡稳定性   总被引:26,自引:0,他引:26  
雷远见  王水林 《岩土力学》2006,27(10):1693-1698
将通用离散元UDEC与强度折减法结合,对含多结构面的岩质边坡的稳定性进行了分析。通过对节理岩质边坡的UDEC模型中的可变形块体和节理单元的强度参数进行折减,使模型不能再达到平衡状态,此时的折减系数就是边坡的安全系数,另外,由对应的边坡块体的速度矢量可以确定滑动面和边坡的破坏形态。通过与传统的条分法的结果比较,表明基于UDEC的强度折减法是一种可靠、有效的方法,为复杂节理岩质边坡的滑动面确定与安全系数计算开辟了新的途径。  相似文献   

6.
张文莲  孙晓云  陈勇  金申熠 《岩土力学》2022,43(Z2):607-615
在岩体边坡稳定性分析方法中,基于非线性Hoek-Brown准则的强度折减法,存在折减方案不统一或计算太复杂等问题。针对这一问题,提出了一种基于岩体抗压强度的广义Hoek-Brown准则强度折减法,比直接折减材料参数,更能体现强度衰减的物理意义。方案以岩体单轴抗压强度作为折减依据,对岩石单轴抗压强度sci和反映岩体结构特征的参数组合sasa 均为模型参数)进行同比折减,分析该方案下抗剪切强度和抗拉强度的折减比例,并基于平均抗剪强度定义安全系数。应用该方案,对两个经典边坡算例进行稳定性分析,将所得安全系数、临界滑动面与局部线性化强度折减法、极限平衡法进行对比。结果表明,对于两算例,本方法所得安全系数与其他两种方法结果接近,相对误差低于2%;在算例1中,本方法得到的临界滑动面位置与其他两种方法结果一致性很高;在算例2中,本方案滑动面位置更接近于局部线性化法,且能同时反映剪切和拉伸破坏。以上结果验证了本强度折减方案和安全系数定义法的可靠性和合理性。  相似文献   

7.
对边坡稳定性分别采用按极限平衡法、有限元强度折减法进行二维分析,通过对比计算结果来验证强度折减法分析的准确性与可行性。针对边坡开挖与加固及隧洞开挖的三维效应,采用三维弹塑性有限元强度折减法分析计算边坡的稳定性,计算分析了开挖完成、支护完成条件下边坡安全系数、位移分布、主应力分布、等效塑性应变区和潜在滑动面。结果表明,支护加固可较大提高边坡的稳定安全系数,三维强度折减法分析在岩土工程领域具有明显优势。  相似文献   

8.
《岩土力学》2017,(6):1827-1831
临界滑面的确定一直是岩土工程界研究的热点问题。利用有限元-强度折减法对二维边坡进行稳定性分析时,对于进入极限平衡状态的边坡而言,沿边坡深度方向的等效塑性应变最大值点一般也就是临界滑面上的点。然后通过预设一组相互平行且与坡面近似垂直的直线,找出各直线上等效塑性应变的最大点,可得到一系列呈波动状分布的点,这些点构成了一组一维的信号函数;再利用小波分析对数据进行平滑处理就可得到边坡的临界滑面。通过经典算例分析并与Spencer法等前人的研究成果比较,结果表明该方法是合理有效的,可以用于边坡临界滑面的确定。  相似文献   

9.
李小春  袁维  白冰  石露 《岩土力学》2014,35(3):847-854
边坡最危险滑动面的搜索方法一直是研究的热点,但边坡内部次级滑动面也可能不满足安全设计要求,因此,考虑边坡多条滑动面的分析方法亦应得到关注。在传统强度折减法中,对边坡整个区域的抗剪强度参数进行折减,此方法仅可得到一个临界滑动面和最小安全系数。提出了一种基于局部强度折减法的多滑面分析方法,即首先定义单元安全系数的概念,并且计算边坡每个单元的安全系数,然后自动搜索出单元安全系数处于不同范围内的单元集合,对各个单元集合的强度参数进行折减计算,即可得到不同安全系数对应的滑动面。通过单台阶和双台阶边坡算例验证了该方法的可行性,结果表明,随着安全系数的增大,潜在滑面的深度和潜在滑动区域亦增大。最后把该方法应用到某隧道进口仰坡的稳定性评价中, 通过该方法得到的多级滑动面与现场监测数据吻合较好。  相似文献   

10.
基于抛物线型D-P准则的岩质边坡稳定性分析   总被引:3,自引:0,他引:3  
黄宜胜  李建林  常晓林 《岩土力学》2007,28(7):1448-1452
岩质边坡内通常会存在部分拉剪屈服区,因此,在岩质边坡的稳定性分析中采用能够同时考虑拉剪屈服和压剪屈服的H-B准则相较M-C准则来说更为合适。推导了基于H-B准则的抛物线型D-P准则,克服了H-B准则在数值计算中的困难。针对基于抛物线型D-P准则的有限元强度折减法,证明了折减抛物线型D-P准则材料参数的合理性。结合上述研究成果,分析了茨哈峡水电站右岸泄水边坡在天然状况下和泄水雾化状况下的稳定安全度。计算结果表明,该边坡在天然状况下是稳定的,但在泄水雾化状况下将会发生失稳。因此,需对该边坡采取工程处理措施,提高其稳定安全度,以防泄洪雾化失稳。  相似文献   

11.
针对高烈度区九龙山黄土高边坡的动力稳定性问题,调查分析了该边坡的工程地质条件和场地所在区域构造活动与分布特征。在考察动荷载循环、往复作用下黄土反应敏感性及动强度参数,以及沿坡高确定地震惯性力反应地震作用大小的基础上,将强度参数折减与有限差分方法结合,从而形成了边坡的拟静力强度折减有限差分分析方法。通过九龙山土边坡拟静力强度折减三维有限差分法计算分析,得到了强度折减条件下边坡的位移场和应力场,边坡关键点位移与折减系数之间的关系,以及黄土高边坡的动力稳定性安全系数。其分析结果与传统的二维极限平衡分析方法确定的结果基本一致,验证了边坡拟静力强度折减有限差分方法的合理性。  相似文献   

12.
基于强度折减和容重增加法的三维边坡稳定性分析   总被引:2,自引:0,他引:2  
利用以变形变化趋势为边坡破坏判别标准的强度折减法和容重增加法,对某水电站高边坡进行了三维稳定分析,得到了三维最危险潜在滑动块体及相应的安全系数。同时与广义楔形体法二维计算结果进行了比较。计算结果表明,以边坡变形变化趋势为破坏判别标准,基于强度折减法和容重增加法的三维边坡稳定分析是合理可行的。  相似文献   

13.
层状岩质边坡遍布节理模型的三维稳定性分析   总被引:4,自引:1,他引:4  
采用遍布节理模型(ubiquitous-joint模型)描述层状岩体的各向异性特征,并探讨ubiquitous-joint准则中安全系数的计算方法,利用FLAC3D分析层理倾角、倾向与边坡稳定性之间的关系,结果表明:(1)对于顺层边坡,当岩层倾向与坡面倾向的夹角 较小时,边坡的安全系数随层理倾角 的增大呈现先减小后增大再减小的趋势; 20°~30°时,安全系数得到最小值, 60°时安全系数得到最大值;不同破坏型式导致安全系数变化规律之间的差异;当 较大时,曲线从先减小后增大的趋势转变为不断增大的趋势;根据 的大小将顺层边坡分为两类:当 45°时,为严格顺层边坡;当45° 90°时,为斜向层状边坡。(2)对于逆层边坡,当 45°时,曲线呈现先增大再减小然后又增大的趋势,各曲线随 的变化程度基本相同;但减小过程中,随着 的增大,曲线的斜率逐渐减小,边坡稳定性的各向异性程度减小;当 45°时,曲线随 的增大呈现非线性单调递增的趋势。(3)安全系数与 之间的关系表明,对于顺层坡,随着 的增大,边坡安全系数逐渐增大;对于逆层坡,当 较小时( 150°),边坡安全系数随 的增大而逐渐减小;随着 的增大( 120°),边坡安全系数与 呈现递增关系。  相似文献   

14.
露天煤矿边坡稳定性评价方法的耦合应用   总被引:1,自引:0,他引:1  
将有限差分法、极限平衡法(简化Bishop法)、可靠度分析法(简化一次二阶矩法)耦合应用于露天煤矿边坡稳定性评价,确定了可靠度法设计中的可靠度数值问题,并采用力学行为、稳定系数及破坏概率等3项综合指标分析了边坡稳定性,旨在建立一种有效的耦合方法,多角度分析边坡工程的即时状态。研究结果表明,该分析方法可行,结果可信。  相似文献   

15.
边坡稳定的非线性有限元分析   总被引:2,自引:4,他引:2  
谭晓慧  王建国  王印 《岩土力学》2008,29(8):2047-2050
基于有限元强度折减法,进行了边坡的弹塑性材料非线性及大变形几何非线性分析,并考虑了边坡的三维变形情况。在有限元分析中采用的是莫尔-库仑理想弹塑性模型,大变形分析采用的是更新的拉格朗日法。均质边坡的算例分析表明,有限元法与简化的毕肖普法的安全系数计算结果具有相同的规律,即安全系数都随着黏聚力及内摩擦角的增加而增加,随着重度的增加而减小,但是,各种有限元法的计算结果都比相应的毕肖普法的解要大,亦即毕肖普法偏于安全。各种方法对应的安全系数由大到小的顺序依次是:三维小变形有限元分析、二维大变形有限元分析、二维小变形有限元分析,简化的毕肖普法,前二者能更好地反映实际的边坡变形情况,二者的安全系数值也十分接近,因而是较好的方法。  相似文献   

16.
多层软弱夹层边坡岩体破坏机制与稳定性研究   总被引:2,自引:0,他引:2  
张社荣  谭尧升  王超  王宽 《岩土力学》2014,35(6):1695-1702
以大量的实际工程为基础,基于Sarma极限平衡法和有限元强度折减法探讨层状岩质边坡在不同岩层倾角θ、边坡坡角β、结构面间距h条件下的安全系数与破坏面位置的变化规律,揭示复杂多层软弱夹层边坡岩体的破坏机制及稳定性特征。结果表明:不同θ条件下边坡岩体失稳机制和破坏面位置不同,随着θ的增大,破坏机制表现为滑移破坏→滑劈破坏→崩塌破坏→倾倒破坏→滑移破坏;当β、h一定时,直立层状边坡的稳定性略大于水平层状边坡,反倾向边坡的稳定性明显大于顺层边坡;β直接影响边坡岩体破坏特征,当β由30°增大至60°时,顺层边坡的安全系数约降低53%;反倾向层状边坡的安全系数约降低40%;h对边坡岩体破坏机制的影响较小,但对稳定性的影响较大,建议工程实践中加强密集结构面岩质边坡的监测和加固工作。  相似文献   

17.
在分析黄陵—延安高速公路K207 690~830段边坡特征的基础上,分别用剩余下滑力法、极限平衡法和强度折减有限元法,对在降雨入渗作用下该边坡的稳定性进行了对比分析,提出了针对该边坡特点的重力式挡土墙和疏排地表水相结合的滑坡综合治理方案;用SLOPE/W法对治理后边坡稳定性模拟分析认为,边坡安全系数得到很大提高,治理效果明显。研究表明,与传统的边坡稳定性分析方法相比,强度折减有限元法得到的边坡安全系数物理意义明确,优势明显,具有一定推广价值。  相似文献   

18.
有限元强度折减法计算边坡稳定的对比分析   总被引:1,自引:0,他引:1  
程灿宇  罗富荣  戚承志  王霆 《岩土力学》2012,33(11):3472-3478
采用目前边坡稳定性分析比较流行的强度折减法,对比研究了MIDAS/GTS、FLAC、ANSYS配合Drucker-Prager(简称D-P)屈服准则和Mohr-Coulomb(简称M-C)屈服准则时软黏土、硬黏土、弱膨胀土3种工况下计算结果的偏差。软黏土工况下D-P准则和M-C准则计算结果的偏差相对较小,当边坡土体为硬黏土时,采用D-P准则与采用M-C准则计算结果的偏差明显增加。3种软件2种屈服准则下的计算结果都反映出,硬黏土的滑动面比弱膨胀土和软黏土的滑动面浅,而且同等情况下MIDAS计算得到的滑动面比ANSYS计算得到的滑动面浅;坡度较小时FLAC(M-C)计算的安全系数比MIDAS(M-C)计算得到的大,坡度较大时则相反;坡度较小时计算过程中先出现塑性区贯通,后出现计算不收敛;坡度较大时计算过程中先出现计算不收敛,后出现塑性区贯通。坡度较小时计算不收敛时的折减系数与出现塑性区贯通时的折减系数差别较大;坡度较大时这一差别较小,甚至计算到不收敛时塑性区仍未贯通,在用MIDAS计算时这一现象反映得更加明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号