首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
本文基于2000~2014年共计15年夏季(6~8月)的TRMM卫星PR(测雨雷达)探测结果2A25资料,对高原东坡及临近区域降水的水平、垂直分布特征,以及日变化特征进行了分析,结果揭示了高原对降水的影响。由降水样本数占PR总观测样本数的比例可知,降水频次表现为高原低、东部盆地高的特点,平均降水强度也类似。层云降水频次高于对流降水,但平均降水率低于对流降水。降水的垂直分布表明,下垫面高度超过3km时,降水率廓线峰值出现在5~6km,而其它地区峰值出现在3~4km高度。该区域的降水以夜雨为主;高原上的对流类型降水主要发生在白天,盆地和丘陵地区降水主要发生在夜间。  相似文献   

2.
利用热带测雨卫星(TRMM)探测资料和ERA5再分析资料,研究了2006年7月6日发生在青藏高原东坡的一次强降水过程,并在此基础上分析了青藏高原东坡夏季(6—8月)的降水结构特征。研究结果表明:青藏高原东坡较强降水个例发生在低层辐合、高层辐散的降水环境背景场中,雨带呈东北-西南分布,最大降水强度超过20 mm·h-1。对流降水回波顶高超过17 km,层状降水回波顶高低于15 km,6.5 km高度存在亮带,且外形也似非高原地区的层状降水垂直结构。统计分析表明在高原东部偏南区、高原东部与四川盆地交界区南部的夏季降水频次高,而在高原东部偏北及四川盆地的降水频次、对流和层状降水频次均比上述地区小;多年夏季的日均降水量分布大体与降水频次分布类似。降水反射率因子的垂直结构具有地域性特点,高原东部偏南和偏北区的回波垂直结构相似,因受到地形高度的压缩,其降水垂直结构与非高原地区的不同;而高原东部与四川盆地交接区的降水垂直结构外形,介于高原与非高原之间;四川盆地的对流降水和层状降水垂直结构与中国东部平原及热带副热带洋面的相近,但层状降水的亮带高度高出1 km。  相似文献   

3.
利用热带测雨卫星(TRMM)搭载的测雨雷达(PR)和可见光/红外扫描仪(VIRS)探测结果的融合数据,结合ECMWF再分析资料,分析了1998年6月22日(轨道号:03257)和2011年7月3日(轨道号:77642)两个夏季青藏高原横切变线个例的云降水特征。结果表明,高原横切变线降水回波顶高度多分布于4~10 km,局部可达12 km,其降水强度85%以上为0. 5~2. 5 mm·h-1,仅局部达20 mm·h-1以上。云粒子尺度(云粒子有效半径)分布较为均匀,多数尺度分布在10~30μm之间,尺度峰值均为16μm,局部尺度可达30μm以上,液态水路径的峰值均在1. 50 kg·m-2左右。降水回波顶高度最高可达17 km,近地面降水回波强度最大可达50 d BZ,降水回波主要出现在6~10 km高度,其强度大体在17~25 d BZ。横切变线降水中浅薄降水、深厚弱对流降水、深厚强对流降水的垂直结构差异明显,并相应产生不同的近地面降水强度。  相似文献   

4.
利用热带测雨卫星(TRMM)上搭载的测雨雷达(PR)探测结果和中国40°N以南地区约430个台站雨量计观测结果,分析研究了1998-2005年中国南方地区这两种降水资料气候分布的异同.研究结果表明两种降水资料在2.5°空间水平分辨率上,所描述的中国南方降水率气候分布在多年年平均和季平均上具有较好的一致性,但在降水率极值和极值区范围大小等细节上两者还存在一定的差异,主要是地面雨量计结果相对PR结果偏高,其中中同南方50%以上地区两者相差在1 mm/d以内、30%的地区两者相差在1-2 mm/d,夏季差异可超过2 mm/d.对两种降水资料差异的原因分析表明,地面雨量计空间分布密度是影响两者差异的决定性因素,当格子内雨量计超过6个时,两者的相关系数大于0.7;夏季两种降水资料的相关性都比其他季节差,不论格子内的雨量计数量多与少;对流降水多发地区,两种降水资料之间的差异大于层云降水多发地.利用PR探测结果对夏季青藏高原多年月平均降水率分布及高原东、西部的降水特点的分析表明,6月高原东部出现2 mm/d左右的降水区,而在7和8月1 mm/d的降水区域基本覆盖了除高原西部以外的整个高原,其中高原中部地区出现降水率近3mm/d的大值区.月降水距平的时间演变表明,高原降水偏少月份要多于偏多月份.  相似文献   

5.
杨柳  袁俊鹏  孙囡  傅云飞 《暴雨灾害》2022,51(3):276-289

针对青藏高原东南坡降水云内大气温湿结构缺乏认知的情况,利用TRMM PR资料、ERA5再分析资料和IGRA等资料,分析了青藏高原东南坡三个降水个例水平分布特征、垂直结构特征及天气背景特征。结果表明:(1) 高原东南坡以冰云及混合云降水为主,近地表降水率及回波顶高度分布不均;地表雨强越大,回波顶高度越高,云顶温度越低。虽然对流降水样本数较少,但其降水强度集中在10~50 mm·h-1,对总降水量的贡献较大。(2) 从降水垂直结构来看,降水率自高空至6 km高度较为均匀的增大,体现了粒子的碰并增长过程,在4—6 km高度,降水释放潜热最大,粒子尺寸也更大,大于40 dBz的反射率因子多分布在此高度范围内。(3) 雷达反射率因子的垂直变率在5 km附近有一狭长大值区,反映了融化层的存在,融化层会随着回波顶高度的变化表现出轻微的抬升或下降。(4) 三个降水个例均发生在低层辐合高层辐散的流场中,降水落区水汽充沛,且云体对流有效位能较大,有利于降水系统的产生和发展。

  相似文献   

6.
利用热带测雨卫星测雨雷达的10年探测结果,对夏季亚洲对流降水与层云降水雨顶高度分布、雨顶高度与地表降水强度的关系、雨顶高度日变化特征进行了研究。结果表明,青藏高原和中国东部平原的多数(70%以上)对流降水雨顶高度分布在8—12和5—10km,其他地区分布在5—9km;陆面对流降水雨顶平均高度高于洋面。洋面和陆面层云降水雨顶高度没有明显差异,多在5—8km。夏季亚洲浅对流降水比例少,而深厚对流主要出现在中国东部平原、西南、印度次大陆西部至伊朗高原东部地区,比例约40%。洋面和陆面的弱对流降水的雨顶平均高度在7—8km,弱层云降水相应的雨顶平均高度多小于7.5km;陆面约90%的强对流降水雨顶平均高度在9km以上,而强层云降水雨顶的平均高度通常不超过8.5km。夏季亚洲对流降水和层云降水的雨顶平均高度均随着地面平均降水率的增大而升高,两者遵从二次函数关系。对流降水及层云降水频次、强度和雨顶高度的日变化峰值分析表明,陆面这些参量的日变化强于洋面,并且三者的日变化基本同步。  相似文献   

7.
热带测雨卫星测雨雷达探测的亚洲夏季积雨云云砧   总被引:6,自引:1,他引:5  
热带测雨卫星(TRMM)测雨雷达探测产品资料中"其他"类型降水一直被忽略,它具有什么物理含义也无从知晓。文中利用个例分析和统计分析方法,对10年夏季亚洲"其他"类型降水进行了研究。个例分析结果表明"其他"类型降水的平均廓线表现了积雨云云砧特征,其廓线峰值(约0.6—1.0 mm/h)高度位于8—10 km,且云砧顶部具有0.8以上的可见光平均反射率和低于215 K远红外平均亮温;根据个例中积雨云云砧廓线特点,文中定义5 km以上各层累计降水率大于1 mm/h为云砧廓线,对亚洲夏季积雨云云砧样本进行了统计,结果表明该地区夏季云砧样本占"其他"类型降水样本总数的近70%;统计结果还表明夏季亚洲积雨云云砧出现频次为0.1%—0.4%,它至少超过对流降水频次的十分之一,亚洲云砧出现频次的特点是陆面高于洋面;云砧的结构特点表明云砧平均厚度3—4 km,其底部高度约6 km,顶部高度在10—12 km;云砧的平均可见光反射率在0.8—0.9,远红外平均亮温低于220 K。  相似文献   

8.
胡亮  杨松  李耀东 《大气科学》2010,34(2):387-398
利用10年的TRMM卫星降水雷达观测资料, 首次对青藏高原及其下游平原及海洋地区降水厚度的地区差异进行了对比分析, 并对青藏高原及其周边地区对流和层云降水厚度的水平分布及其日变化和季节变化进行了统计分析, 结果表明: (1) 青藏高原地区对流和层云降水厚度都要比下游平原地区更为浅薄, 东部海洋地区对流降水厚度比平原地区小, 而层云降水厚度与平原地区相当。青藏高原及其下游平原地区对流降水厚度的日变化特征非常明显, 海洋地区对流降水厚度日夜差异则不大。层云降水厚度在各地区的日变化特征都不明显。青藏高原、下游平原及海洋地区对流和层云降水厚度的季节变化都非常明显, 从冬至夏, 对流和层云降水逐渐变得深厚, 而从夏入冬, 对流和层云降水则逐渐变得浅薄。(2) 青藏高原及其周边地区对流和层云平均降水厚度的分布形式和降水量分布具有较好的对应关系, 降水量大的地区其降水厚度一般较为深厚, 降水少的地区则降水厚度比较浅薄。对流和层云降水厚度存在明显差异, 对流降水一般要比层云降水深厚。青藏高原及其周边地区降水厚度水平分布的日夜差距不大, 但季节变化非常明显, 且与气候系统的季节变化紧密相关。  相似文献   

9.
西太平洋副热带高压下热对流降水结构特征的个例分析   总被引:13,自引:6,他引:13  
利用热带测雨卫星的测雨雷达和红外辐射计的探测结果,对2003年8月2日15时(北京时)中国东南部副热带高压下发生的热对流降水结构特征、云和降水云之间的关系进行了分析研究。大气背景分析表明,500 hPa副热带高压中心附近的较强上升运动和850 hPa的水汽通量辐合为此次午后热对流降水云团的发生提供了动力和水汽条件。热带测雨卫星的测雨雷达探测结果表明,热对流降水云团的水平尺度多为30~40 km,平均垂直尺度均超过10 km,最高达17.5 km;云团的最大近地面雨强超过50 mm/h。热对流降水云团的平均降水廓线表明,其最大降水率出现在5 km的高度,这一高度比估计的环境大气0℃层高度低1 km。与“98.7.20”中尺度强降水的对流降水廓线比较表明,两者的最大降水率高度相同,但热对流降水云团更深厚;在4 km高度至近地面,热对流的降水率减少速度比“98.7.20”强对流降水的快,表明前者雨滴在下降过程中因气温高而发生强烈蒸发。对降水云团顶部特征与近地面雨强关系的分析结果表明,雨顶高较低时,云顶高度变化范围大;当雨顶越高时,云顶高度与雨顶高度越相近;平均而言,给定地面降水率,云顶高度比雨顶高度高出1~4 km;当近地面雨强越大,则云顶高度和雨顶高度越高、且越相近。结果还表明,非降水云面积约占86%,晴空面积仅占2%,而降雨云面积约为云面积的1/8。  相似文献   

10.
基于气象卫星资料的天气雷达非降水回波消除方法   总被引:1,自引:0,他引:1       下载免费PDF全文
在分析天气雷达回波与卫星云图的基础上,利用"点对块"的匹配方式对雷达、卫星资料空间一致性进行处理,提出了基于气象卫星(Himawari-8)高时空分辨率资料的天气雷达非降水回波消除方法,并选取晴空非降水回波分布较广的华北、华中和长江中下游地区为研究范围,以地面气象观测的降水资料为标准,对降水和非降水条件下卫星资料红外亮温(TBB)特性值进行统计分析,得到TBB的概率分布,采用红外亮温阈值法进行天气雷达非降水回波的消除。选取2016年7月1—30日地面气象观测资料对该方法消除效果进行检验评估,该方法的正确识别率达88.5%。个例效果检验表明:该方法能够有效地识别消除大部分非降水回波,在基于现有天气雷达资料质量控制方法的基础上可进一步提高雷达数据质量;该方法对无云条件的非降水识别率较高,对降水回波误判率较低,但对有云条件下的非降水回波识别率较低。  相似文献   

11.
TRMM卫星探测青藏高原谷地的降水云结构个例分析   总被引:12,自引:2,他引:12  
傅云飞  李宏图  自勇 《高原气象》2007,26(1):98-106
利用TRMM卫星测雨雷达探测反演的降水廓线、红外辐射温度、微波高频辐射亮温和闪电资料,并结合数字地形资料和NCEP再分析资料,分析研究了1999年5月4日13:05(UTC,下同)青藏高原东南部某山谷及附近地区(29.49°N~30.13°N,95.08°E~96.89°E)的降水云结构。结果表明,该降水云团为特殊地形强迫而引起的一强对流降水;强对流降水云团水平范围约20km,它自谷地向上呈“蘑菇”状向上水平展开;最大降水率位于谷中云体下部,超过100mm.h-1;在谷地上方该强对流降水云团云体向下风方向延伸,形成下风方向大范围的弱降水。结果还表明,强对流降水云团中剧烈变化的地表降水率也反映在云团云顶红外辐射温度和云体微波辐射亮温的变化上。此外,虽然闪电附近云顶高度和云中的含冰量相差甚小,但闪电发生次数、持续时间和发出的辐射能量却十分不均。降水事件的天气背景分析表明,降水发生前13h内,高原500hPa一弱低压槽东移引起的大气低层辐合、中高层辐散及大气不稳定性增加,是此次降水事件发生的大气内在因素。  相似文献   

12.
唐洁  郭学良  常祎 《大气科学》2018,42(6):1327-1343
第三次青藏高原科学试验针对高原夏季云和降水物理过程开展了大量观测研究,为进一步揭示高原云微物理结构、云中水分转化和区域水分收支特征,本文采用中尺度数值预报模式(WRF)并结合高原试验期间的各种观测资料,对那曲观测试验区2014年7月5~6日的一次较为典型的夏季对流云降水过程进行了数值模拟研究。结果表明WRF模式能够基本再现高原夏季对流云的发展演变过程以及降水的日变化特征。模拟结果显示高原夏季对流云中具有较高的过冷云水和霰粒子含量,冰相过程在高原云和降水的形成和发展中具有十分重要的作用,地面降水主要由霰粒子融化产生。暖雨过程对降水的直接贡献很小,但在霰胚形成中具有十分重要的作用。霰粒子胚胎的形成主要来源于冰晶与过冷雨滴的撞冻过程,雪粒子和过冷雨水的碰冻转化及过冷雨滴的均质冻结贡献相对较小。霰粒子的增长过程在12 km(-40℃)以上层主要依靠对冰晶、雪粒子的聚并收集过程,而在其下层的增长过程主要依赖对过冷云水的凇附增长,对雪粒子的聚并收集和凝华增长过程较小。高原那曲地区净水汽收支为正,日平均降水转化率可达20.75%,接近长江下游地区,高于华北、西北地区。该地区日降水再循环率为10.92%,说明局地蒸发的水汽对高原降水的水汽来源具有一定的贡献,但高原降水的90%仍然由外界输入的水汽转化形成。  相似文献   

13.
吴翀  刘黎平  翟晓春 《大气科学》2017,41(4):659-672
激光云高仪和云雷达是探测云底的两种设备,但其探测能力和探测结果有一定的差异,对比分析两种设备的测云效果有助于正确认识它们的探测优势,推进我国云雷达在云探测中的应用。本文提出了基于云雷达数据的云底和云顶高度分析方法,利用2014年夏季第三次青藏高原大气科学试验云雷达、激光雷达和激光云高仪数据,统计了三种设备探测青藏高原低云、中云和高云的云底高度偏差、探测率,分析了激光云高仪探测云底偏高的原因,根据探测结果提出了固态发射机体制雷达探测青藏高原低云的优化观测模式,模拟分析了探测效果。结果表明:(1)云雷达对高云的探测能力要明显优于激光云高仪,但其对低云的探测能力有待改进,激光云高仪探测云底下部的边界层内的云雷达回波信号可能是非云降水回波;低层云的遮挡作用明显降低了激光云高仪对多层云的观测能力;与激光云高仪相比,云雷达仍然会漏掉一些高云和中云。(2)激光云高仪探测的中云和高云的云底很多在云雷达回波内部,云雷达和激光云高仪观测的云底的时空对应关系比较差。(3)增大激光发射功率和优化固态发射机体制云雷达观测模式可提高云的观测能力,微波和激光雷达数据融合可全面了解不同类型云的宏观特征。这一工作为云雷达和激光雷达数据的应用,评估激光云高仪和云雷达探测青藏高原云的能力,讨论设计优化的云观测方案,为推进我国云观测技术的发展提供了重要参考依据。  相似文献   

14.
基于1998—2013年的TRMM (tropical rainfall measuring mission) 数据,分析青藏高原闪电活动与降水气候特征及时空对应关系,结果表明:青藏高原 (简称高原) 的闪电活动中心在高原中部和东北部,中部最大闪电密度达到6.2 fl·km-2·a-1;但高原降水最活跃的区域是东南部,年降水量超过800 mm。闪电活动和降水随月份均呈现出先西进再东退的特征,但高原东北部强闪电活动区位置几乎不变化。在固定区域闪电和降水月变化具有一致性,活跃期出现在5—9月,呈单峰结构,除西部和东南部外,闪电与降水峰值月份吻合。结合TRMM降水特征 (简称PFs) 资料研究单个闪电表征降水量 (rainyield per flash,RPF) 的空间分布特征表明,闪电活动可以作为高原深对流的指示因子,而RPF可以有效表征深对流系统在整个降水系统中的比例。高原中西部和东北部深对流系统在整个降水系统中的比例最大,而在高原东南部最小,高原东南部的降水更多由暖云降水系统贡献。  相似文献   

15.
The multidimensional morphological characteristics(including scale, horizontal shape and 3 D morphology) of precipitation areas over the Tibetan Plateau in summer were studied using 15 years(1998–2012) of observational data from the precipitation radar onboard the Tropical Rainfall Measuring Mission satellite. As the scale of the precipitation area increased from 20 to 150 km, the near-surface rain rate(RRav) of the precipitation area increased by up to 78%(from ~1.12 to ~2 mm h~(-1)). Linear precipitation areas had the lowest median RRav(~1 mm h~(-1) over the eastern Tibetan Plateau),whereas square-shaped precipitation areas had the highest median RRav(~1.58 mm h~(-1) over the eastern Tibetan Plateau).The 3D morphology was defined as the ratio of the average vertical scale to the average horizontal scale, where a large value corresponds to thin and tall, and a small value corresponds to plump and short. Thin-and-tall precipitation areas and plump-and-short precipitation areas had a greater median RRav, whereas the precipitation areas with a moderate 3D morphology had the lowest median RRav. The vertical structure of the precipitation-area reflectivity was sensitive to both size and 3D morphology, but was not sensitive to the horizontal shape. The relationship between RRav and the morphological characteristics was most significant over the southern slopes of the Tanggula Mountains and the Tibetan Plateau east of 100°E. The morphological characteristics of precipitation areas are therefore closely related to the intensity of precipitation and could potentially be used to forecast precipitation and verify numerical models.  相似文献   

16.
RegCM3模式对青藏高原夏季气温和降水的模拟   总被引:5,自引:4,他引:5       下载免费PDF全文
利用RegCM3模式对青藏高原1991—2000年10年夏季(6~8月)的地面气温和降水进行了模拟, 其模拟结果与CRU资料的对比分析表明: RegCM3模式的模拟能再现高原地面气温和降水的基本特征, 特别是气温, 能捕捉到高原北部夏季升温明显高于南部, 东北部升温最大; 在夏季3个月中, 模拟结果和CRU在6月份最为吻合, 7月份两者均为夏季气温最高月份和升温幅度最大月份, 8月份两者相差较大。RegCM3模式能够模拟出高原降水分布的基本特征和主要干湿中心, 由于高原降水的复杂性和模式对降水描述能力的不足, 降水模拟要差于气温。  相似文献   

17.
杨莲梅  张庆云 《高原气象》2007,26(3):435-441
利用1980—2004年NCEP/DOE新再分析月平均资料及我国225个测站1980—2004年月降水量资料,通过诊断分析,研究了南疆夏季降水异常的环流和高原地表潜热通量特征。结果表明:南疆夏季降水偏少年,南亚高压西部偏强,西风急流位置偏北,500 hPa中高纬环流经向度减弱,伊朗高压偏北、偏东,西太平洋副热带高压偏西、偏南;降水偏多年则相反。南疆夏季降水偏少年,高原北部和南疆地区为下沉的垂直环流距平,Ferrell环流增强;降水偏多年则相反。南疆夏季降水偏少年和偏多年的前期冬春季开始孟加拉湾、青藏高原和南疆地区地表潜热通量具有相反的变化,南疆夏季降水与高原北部地表潜热通量呈显著正相关,与南部地表潜热通量呈反相关关系。  相似文献   

18.
基于TRMM资料的高原涡与西南涡引发强降水的对比研究   总被引:4,自引:0,他引:4  
利用TRMM(Tropical Rainfall Measuring Mission)卫星探测结果结合NCEP(National Centers for Environmental Prediction)再分析资料, 对2007年7月17日四川、重庆地区的一次西南涡强降水系统和2008年7月21日四川东部的东移高原涡强降水系统的三维结构特征、雨顶高度以及降水廓线特征进行对比分析研究。结果表明:(1)两次降水过程均是发生在西南—东北向的水汽辐合带中, 且降水云群均位于低涡的东南方。(2)两次强降水在水平结构上均表现为由一个主降水雨带和多个零散降水云团组成, 高原涡强降水过程比西南涡强降水的降水强度和范围都要大。降水雷达探测到的两个中尺度降水系统均以降水范围大、强度弱的层云降水为主, 但对流性降水对总降水量的贡献较大, 其中西南涡降水中对流降水所占比例比高原涡的大, 对总降水率的贡献也大。(3)垂直结构上:两次强降水的雨顶高度均是随地表雨强的增加而增加, 且最大雨顶高度接近16 km, 但西南涡强降水中的雨顶高度比高原涡更高, 说明西南涡降水过程中对流旺盛程度强于高原涡。(4)两次强降水中雨滴碰并增长过程以及凝结潜热的释放主要集中在8 km以下, 但8 km以上西南涡降水变化大于高原涡, 且前者在8~12 km高度层的降水量对总降水量贡献百分比大于后者。  相似文献   

19.
周胜男  罗亚丽  汪会 《气象》2015,41(1):1-16
利用1998—2011年夏季(6—8月)TRMM卫星资料分析青藏高原(TP)、中国东部(EC)及北美副热带西部(WNA)和东部(ENA)降水系统的发生频次,定义降水系统为TRMM测雨雷达观测到近地面有降水的相邻像元组成的个体,即RPF (Radar Precipitation Feature),将RPF分为全体RPF、大面积RPF(面积>1000 km2)和小面积RPF(面积不<400 km2)3组,对比分析四个区域内各组的RPF个数发生频次和RPF像元个数发生频次,主要结果如下:(1)全体RPF的个数发生频次在青藏高原地区最高,北美东部地区最低;全体RPF的降水像元个数发生频次在中国东部最高,青藏高原最低。(2)四个区域内RPF发生频次的日变化主要为单峰结构,峰值出现在当地午后至傍晚,且大面积RPF的峰值时间晚于小面积RPF的;中国东部地区RPF降水像元个数发生频次则具有双峰结构。(3)RPF降水像元个数发生频次的分析结果与以往基于地面观测降水量的分析结果相似。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号