首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A photometric study of a contact binary system, GV Leo is presented. New observations were done using the B VR filter bands. We find that a revised orbital period is 0.26673171 d and the orbital period of this system is decreasing at a rate of dP/ dt = -4.95 × 10-7 d yr-1. The photometric solutions are fairly well fitted at a mass ratio of q = 0.1879, with a fillout factor of f = 17.74%. The results indicate that there exists mass transfer from the more massive component to the less massive one at a rate of relative mass exchange, 6zl/m = -1.09× 10-7 yr-1. It is possible that this weak- contact system, that shows a decreasing orbital period, may undergo contraction of the inner and outer critical Roche lobes and evolve into a deep-contact binary.  相似文献   

3.
1RXS J201607.0+251645 is identified as an eclipsing binary. We present preliminary observations in the V band with the 0.6-m telescope for three years and extensive observations in the V and R bands with the 0.8-m telescope for six nights, respectively. The light curve of the system is E13 type. Five light minimum times were obtained and the orbital period of 0.388058^d(±0.00044d) is determined. The photometric solution given by the 2003-version of the Wilson-Devinney program suggests that the binary is a semidetached system with photometric mass ratio 0.895(±0.006), which is probably comprised of a G5 primary and an oversized K5 secondary. The tess massive component has completely filled its Roche lobe, while the other one almost fills its Roche lobe with a filling factor of 93.4%. The system shows a varying O'Connell effect in its phase folded diagrams from 2005 to 2007, and is X-ray luminous with log Lx/Lbol - -3.27. Possible mechanisms to account for these two phenomena are discussed. Finally, we infer that the binary may be in thermal oscillation or may evolve into a contact binary.  相似文献   

4.
New light curves and photometric solutions of the contact binary AZ Vir are presented in this paper. The light curves appear to exhibit a typical O'Connell effect, with Maximum I being 0.021 mag (V) and 0.023 mag (B) brighter than Maximum II, respectively. From the observations, six times of minimum light were determined and from the present times of minimum light and those collected from the references, the light elements of the system were improved. The light curves were analyzed by means of the Wilson‐Devinney program. The results suggest that AZ Vir is a W‐subtype contact binary with a mass ratio of q = 0.623(2). The asymmetry of the light curves is explained by star spot models. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present results of CCD photometric observations of the short-period W UMatype contact binary system, RZ Com. The light curve of the binary has changed from Wsubtype to A-subtype from 1998 to 2003, then back to W-subtype in 2004. An analysis was carried out using the 2003 version of the Wilson-Devinney code. It is confirmed that RZ Com is a low-degree, overcontact f = 20.1% (±7.4%) binary system with a high inclination of i = 81.°40 (±0.°40), and a mass ratio q = 2.351 (±0.031). Combining four newly determined times of light minimum with others in the literature, the variations in orbital period is examined. A small-amplitude oscillation (A=0.0065d), with a period of 41.5 year, is discovered superimposed on a long-term increase at rate dP/dt = +3.97×10-8d yr-1. The period oscillation can be explained either by the light-time effect due to the presence of an unseen third body, or by cycles of magnetic activity on the components. Combining our photometric solution with the spectroscopic elements obtained by Mclean & Hilditch, the absolute dimensions of RZ Com are: M1 = 1.14 (+0.19)Mo, M2 = 0.50 (-4-0.09)Mo, R1= 1.12 (±0.01)R⊙, R2 = 0.78 (±0.01)R⊙ and A = 2.41 (±0.02)R⊙.  相似文献   

6.
We present high resolution Doppler images of the short period (P = 0.362 d) contact binary AE Phe. Using least squares deconvolution, we make use of the information content of the several thousand lines in each échelle spectrum to obtain the necessary S/N and time resolution required to resolve individual starspot features. A single pair of rotationally broadened profiles (free of sidelobes due to blending) with a typical S/N of 3000 ‐ 4000 per spectrum is thus obtained. With 300 sec exposures we achieve a cadence of 350 sec which is equivalent to sampling the rotation phase every 4°. We derive images for four nights of data which reveal starspots at most latitudes on both components of the common envelope system. Individual starspots evolve significantly on very short timescales, of order one day; significantly faster than the week timescales found on active single stars and the Sun. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
New multi-color photometry of the eclipsing binary UU Leo, acquired from 2010 to 2013, was carried out by using the 60-cm and 85-cm telescopes at the Xinglong station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. With the updated Wilson-Devinney code, the photometric solution was derived from BVR light curves. The results imply that UU Leo is a semi-detached Algol-type binary, with a mass ratio of q = 0.100(±0.002). The change in orbital period was reanalyzed based on all available eclipsing times. The 0 - C curve could be described by an upward parabola superimposed on a quasi-sinusoidal curve. The period and semi-amplitudes are Pmod = 54.5(±1.1) yr and A = 0.0273d(±0.0015d), which may be attributed to the light-time effect via the presence of an invisible third body. The long-term period increases at a rate of dR/dr=+4.64(±0.14)×10^-7d yr^-1, which may be interpreted by the conserved mass being transferred from the secondary to the primary. With mass being transferred, the low-mass Algol-type binary UU Leo may evolve into a binary system with a main sequence star and a helium white dwarf.  相似文献   

8.
Four-color charge-coupled device(CCD) light curves in the B, V, Rc and I c bands of the totaleclipsing binary system V1853 Orionis(V1853 Ori) are presented. By comparing our light curves with those published by previous investigators, it is determined that the O'Connell effect on the light curves has disappeared. By analyzing those multi-color light curves with the Wilson-Devinney code(W-D code),it is discovered that V1853 Ori is an A-type intermediate-contact binary with a degree of contact factor of f = 33.3%(3.7%) and a mass ratio of q = 0.1896(0.0013). Combining our 10 newly determined times of light minima together with others published in the literature, the period changes of the system are investigated. We found that the general trend of the observed minus calculated(O-C) curve shows a downward parabolic variation that corresponds to a long-term decrease in the orbital period with a rate of d P/dt =-1.96(0.46)×10-7 d yr-1. The long-term period decrease could be explained by mass transfer from the more-massive component to the less-massive one. By combining our photometric solutions with data from Gaia DR_2, absolute parameters were derived as M_1 = 1.20 M⊙, M_2 = 0.23 M⊙, R_1 = 1.36 R⊙and R_2 = 0.66 R⊙. The long-term period decrease and intermediate-contact configuration suggest that V1853 Ori will evolve into a high fill-out overcontact binary.  相似文献   

9.
CCD photometric observations with B and V passbands were performed on the contact binary V3 in the field of open cluster M37. The solutions were obtained for data from both B and V passbands along with R passband given by Hartman et al.using the Wilson-Devinney code. The positive O'Connell effect was observed in all the three passbands and its associated cool spot parameters were derived. The results indicate that the spot parameters have not shown any significant variability during the last four years. The spot radius was found to be 40and located close to the equator of the secondary component. The absolute parameters of the system were derived using the empirical relations given by Gazeas et al.  相似文献   

10.
We study the interaction between supermassive binary black holes in an elliptical orbit and their surrounding disk with a gap. The gap in the disk is a low density region formed due to the tidal effects of the less massive black hole. The binary we have investigated has a sub-parsec separation and is coplanar with the disk. We find that the maximum variation of the surface density in the gap reaches 50% during an orbital period. However, in other regions of the disk, the density variation is much less than 1%. Furthermore, we calculate the corresponding variation of spectral energy distribution within a period, but little variation is found. The reason for these results is that the viscosity timescale of the disk at the binary radius is much longer than the orbital period of the binary.  相似文献   

11.
New multi-color light curves of the very short period K-type eclipsing binary V1799 Ori were obtained and analyzed with the Wilson-Devinney code. The photometric solutions reveal that the system is a W-type shallow-contact binary with a mass ratio of q = 1.335(±0.005) and a degree of contact of about f = 3.5(±1.1)%.In general, the results are in good agreement with what is reported by Samec. Dramatic manifestations of the O'Connell effect that appear in the light curves can be explained well by employing starspots on the binary surface, which confirms that the system is active at present. Several new times of light minimum were obtained. All the available times of light minimum were collected, along with the recalculated and newly obtained values. Applying a least-squares method to the constructed O- C diagram,a new ephemeris is derived for V1799 Ori. The orbital period is found to show a continuous weak increase at a rate of 1.8(±0.6) × 10-8d yr-1. The extremely shallow contact, together with the period increase, suggests that the binary may be at a critical stage predicted by thermal relaxation oscillation theory.  相似文献   

12.
We present new CCD photometry of the solar-type contact binary IU Cnc, which was observed from November 2017 to March 2018 with three small telescopes in China. BV light curves imply that IU Cnc is a W-type contact binary with total eclipses. The photometric solution indicates that the mass ratio and fill-out factor are q = 4.104 ± 0.004 and f = 30.2%± 0.3%, respectively. From all available light minimum times, the orbital period may increase at a rate of dP/dt =+6.93(4)× 10^-7 d yr^-1, which may result from mass transfer from the secondary component to the primary one. With mass transferring,IU Cnc may evolve from a contact configuration into a semi-detached configuration.  相似文献   

13.
The catalogue of the light curve solutions of contact binary stars was updated. Based on the catalogue data we call the attention to a remarkable gap in the temperature distribution of contact binaries which remained unexplained. The absolute dimensions of the components were calculated in a reliable way. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The light outside the eclipses of the totally eclipsing RS CVn binary SV Camelopardalis (SV Cam) is Fourier analysed and the amplitudes of the distortion waves have been derived. The distribution of the percentage contributions of these amplitudes inV, B andU colours with respect to the luminosities of the binary components indicates that the hotter component is the source of the distortion waves. These distortion waves, attributed to star spots, are modelled according to Budding (1977) and spot parameters like longitude, latitude, temperature and size are obtained. From this study it is noticed that while symmetric waves with two minima could be fitted satisfactorily, asymmetric waves with more than two minima could not be fitted well. From the longitudes of the minima of the best fitted curves, migration periods of four spot groups are determined. Assuming synchronism between rotation and orbital periods, the rotation periods of the four spot groups are derived from their migration periods. The period of rotation of one of the spot groups having direct motion is found to be 0d.5934209 while the periods of the other three spot groups having retrograde motion are 0d.5926588, 0d.592607 and 0d.5924688. As the latitudes of these spots are known from modelling parameters, the latitude having a rotation period equal to that of the orbital period (co-rotating latitude) is found to be about 30°  相似文献   

15.
16.
17.
We present a long-term time-resolved photometry of the short-period eclipsing binary IU Per. It confirms the intrinsic δ Scuti-like pulsation of the system reported by Kim et al.. With the obtained data, an orbital period study and an eclipsing light curve synthesis based on the Wilson-Devinney method were carried out. The photometric so- lution reveals a semi-detached configuration with the less-massive component filling its own Roche-lobe. By subtracting the eclipsing light changes from the data, we obtained the pure pulsating light curve of the mass-accreting primary component. A Fourier anal- ysis reveals four pulsation modes with confidence larger than 99%. A mode identification based on the results of the photometric solution was made. It suggests that the star may be in radial pulsation with a fundamental period of about 0.0628 d. A brief discussion concerning the evolutionary status and the pulsation nature is finally given.  相似文献   

18.
New CCD light curves of the recently detected eclipsing variable GSC 4589‐2999 were obtained and analysed using the Wilson‐Deninney code. Spectroscopic observations of the system allowed the spectral classification of the components and the determination of their radial velocities. The physical properties and absolute parameters of the components and an updated ephemeris of the system are given (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号