首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We present a calculation of a three-dimensional pulsar magnetosphere model to explain high-energy emission from the Geminga pulsar with a thick outer gap. High-energy γ -rays are produced by primary accelerated particles with a power-law energy distribution through curvature radiation inside the outer gap. We also calculate the emission pattern, pulse profile and phase-resolved spectra of high-energy γ -rays of the Geminga pulsar, and find that its pulse profile is consistent with the observed one if the magnetic inclination and viewing angle are ∼50° and ∼86° respectively. We describe the relative phases among soft (thermal) X-rays, hard (non-thermal) X-rays, and γ -rays. Our results indicate that X-ray and γ -ray emission from the Geminga pulsar may be explained by the single thick outer gap model. Finally, we discuss the implications of the radio and optical emission of the Geminga pulsar.  相似文献   

4.
5.
We discuss the correlations between the luminosities of radio pulsars in various frequency ranges and the magnetic fields on the light cylinder. These correlations suggest that the observed emission is generated in outer layers of the pulsar magnetospheres by the synchrotron mechanism. To calculate the distribution functions of the relativistic particles in the generation region, we use a model of quasilinear interactions between the waves excited by cyclotron instability and particles of the primary beam and the secondary electron—positron plasma. We derive a formula for calculating the X-ray luminosity L x of radio pulsars. A strong correlation was found between L x and the parameter \(\dot P_{ - 15} /P^{3.5}\), where P is the neutron-star rotation period, in close agreement with this formula. The latter makes it possible to predict the detection of X-ray emission from more than a hundred (114) known radio pulsars. We show that the Lorentz factors of the secondary particles are small (γ p = 1.5–8.5), implying that the magnetic field near the neutron-star surface in these objects is multipolar. It follows from our model that almost all of the millisecond pulsars must emit X-ray synchrotron radiation. This conclusion differs from predictions of other models and can be used to test the theory under consideration. The list of potential X-ray radiators presented here can be used to search for X-ray sources with existing instruments.  相似文献   

6.
We present spectra for 34 accretion-powers X-ray pulsars and one millisecond pulsar that were within the field of view of the INTEGRAL observatory over two years (December 2002–January 2005) of its in-orbit operation and that were detected by its instruments at a statistically significant level (> 8σ in the energy range 18–60 keV). There are seven recently discovered objects of this class among the pulsars studied: 2RXP J130159.6-635806, IGR/AX J16320-4751, IGR J16358-4726, AX J163904-4642, IGR J16465-4507, SAX/IGR J18027-2017, and AX J1841.0-0535. We have also obtained hard X-ray (>20 keV) spectra for the accretion-powered pulsars RX J0146.9+6121, AX J1820.5-1434, and AX J1841.0-0535 for the first time. We analyze the evolution of spectral parameters as a function of the intensity of the sources and compare these with the results of previous studies.  相似文献   

7.
The observing signals from pulsar are always influenced by the interstellar medium (ISM) scattering. In the lower frequency observation, the intensity profiles are broadened and the plane of polarization angle (PPA) curves are flattened by the scattering effect of the ISM. So before we analyze the scattered signal, we should take a proper approach to clear scattering effect from it. Observing data and simulation have shown that the Stokes phase portraits IU, IQ and QU are also distorted by the ISM scattering. In this paper, a simulation is held to demonstrate a scattering and a descattering of the Stokes phase portraits of a single pulse profile of a pulsar. As a realization of the simulation method, this paper has studied the descattering of Stokes phase portraits of lower frequency observation of PSR B1356?60, PSR B1831?03, PSR B1859+03, PSR B1946+35.  相似文献   

8.
Young, rapidly rotating neutron stars could accelerate ions from their surfaces to energies of ∼1 PeV. If protons reach such energies, they will produce pions (with low probability) through resonant scattering with X-rays from the stellar surface. The pions subsequently decay to produce muon neutrinos. Here, we calculate the energy spectrum of muon neutrinos, and estimate the event rates at Earth. The spectrum consists of a sharp rise at ∼50 TeV, corresponding to the onset of the resonance, above which the flux drops with neutrino energy as  ε−2ν  up to an upper energy cut-off that is determined by either kinematics or the maximum energy to which protons are accelerated. We estimate event rates as high as 10–100 km−2 yr−1 from some candidates, a flux that would be easily detected by IceCube. Lack of detection would allow constraints on the energetics of the poorly understood pulsar magnetosphere.  相似文献   

9.
10.
11.
The scintillation theory is developed for application to the interstellar medium taking into account both the movement of the pulsars and the movement of the interstellar irregularities.It is shown that the velocity of the drifting pattern differs essentially from that for the pulsars. This difference is due to the medium extent effect and to the motion of the irregularities. The pulsar velocityv 0 and the parameters of the motion of the irregularities ( , ) can be derived from the obtained formulae, using the known parameters of the cross-correlation function of scintillations (V ef, 1,S).In contrast with the interplanetary scintillation, the asymmetry of the form of the cross-correlation function of the interstellar scintillations is caused not only by the motion of the interstellar irregularities, but also by the movement of the source itself.  相似文献   

12.
The observed fraction of pulsars with interpulses, their period distribution and the observed pulse width versus pulse period correlation are shown to be inconsistent with a model in which the angle α between the magnetic axis and the rotation axis is random. This conclusion appears to be unavoidable, even when non-circular beams are considered. Allowing the magnetic axis to align from a random distribution at birth with a time-scale of  ∼7 × 107 yr  can, however, explain those observations well. The time-scale derived is consistent with that obtained via independent methods. The probability that a pulsar beam intersects the line of sight is a function of the angle α and therefore beam evolution has important consequences for evolutionary models and for estimations of the total number of neutron stars. The validity of the standard formula for the spin-down rate, which is independent of α, appears to be questionable.  相似文献   

13.
In this panel discussion contributions were made by K. Strom, L. Nordh and H. Zinnecker on the contributions of surveys to the study of star formation regions, by B. Burton on a survey of galactic H I and by E. Dwek on the detection of galactic supernovae by infrared surveys. The contributions of K. Strom, L. Nordh and E. Dwek are summarized here.  相似文献   

14.
In this study we present and re-analyse the historical, 1889–1998, light curve (LC) of the eclipsing symbiotic binary AR Pav. For the first time, we show that the timing of mid-points of eclipses observed during a quiescent phase obeys a quadratic ephemeris, with an initial orbital period P 0=605.18 d and a rate of period change     .
We determined a distance to the system of 5.8±1.5 kpc, the mass ratio of the giant to the hot star, M g M h=0.4±0.1, the mass of the giant, M g=1.8+1/−0.5 M and its radius, R g=167±15 R.
During quiescence, the LC has characteristic features similar to those observed in cataclysmic variables (CVs). It can be well reproduced by a model of a large accretion disc surrounding the hot star. However, it is probable that the geometry of the transferred material in the Roche lobe of the accretor in AR Pav is different from that of CVs.
During active phases the shape of the LC changes considerably. A complex wave-like variation developed as a function of the orbital phase with an amplitude of ∼1 mag. It is interpreted in terms of a collisionally heated emission region located on the giant surface and arising from the hot star eruption.  相似文献   

15.
We have examined the statistics of the polarization position angles determined for point sources in the NRAO-VLA Sky Survey (NVSS), and find that there is a statistically significant bias towards angles which are multiples of 45°. The formal probability that the polarization angles are drawn from a uniform distribution is exponentially small. When the sample of those NVSS sources with polarizations detected with a signal-to-noise ratio ≥3 is split either around the median polarized flux density or the median fractional polarization, the effect appears to be stronger for the more highly polarized sources. Regions containing strong sources and regions at low-Galactic latitudes are not responsible for the non-uniform distribution of position angles. We identify clean bias as the probable cause of the dominant effect, coupled with small multiplicative and additive offsets on each of the Stokes parameters. Our findings have implications for the extraction of science, such as information concerning galactic magnetic fields, from large-scale polarization surveys.  相似文献   

16.
We investigate the masses of glitching pulsars in order to constrain their equation of state(EOS). The observations of glitches(sudden jumps in rotational frequency) may provide information on the interior physics of neutron stars. With the assumption that glitches are triggered by superfluid neutrons, the masses of glitching neutron stars can be estimated using observations of maximum glitches.Together with the observations of thermal emission from glitching pulsars Vela and J1709–4429, the slope of symmetry energy and incompressibility of nuclear matter at saturation density can be constrained.The slope of symmetry energy L should be larger than 67 MeV while the lower limit of incompressibility for symmetric nuclear matter K_0 is 215 MeV. We also obtain a relationship between L and K_0:6.173 MeV + 0.283 K_0≤ L ≤ 7.729 MeV + 0.291 K_0. The restricted EOSs are consistent with the observations of 2-solar-mass neutron stars and gravitational waves from a binary neutron star inspiral.  相似文献   

17.
18.
The radio luminosities of pulsars are given as functions of their period and the time variation of the period. The parameters of that dependence are calculated and independent distances are determined for pulsars. The average electron densities toward the pulsars are determined from the known dispersion measures. The results obtained are used to study the large-scale electron density distribution in the Galaxy. The distribution maximum lies in the vicinity of the Sagittarius spiral arm. The electron density falls off exponentially in the regions between spiral arms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
We show that the crust–core interface in neutron stars acts as a potential barrier to the peripheral neutron vortices approaching the interface in the model in which these are coupled to the proton vortex clusters. This elementary barrier arises because of the interaction of vortex magnetic flux with the Meissner currents set up by the crustal magnetic field at the interface. The dominant part of the force is derived from the cluster–interface interaction. As a result of the stopping of the continuous neutron vortex current through the interface, angular momentum is stored in the superfluid layers in the vicinity of the crust–core interface during the interglitch period. Discontinuous annihilation of proton vortices at the boundary restores the neutron vortex current and spins up the observable crust on short time-scales, leading to a glitch in the spin characteristics of a pulsar.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号