首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
将理想化的南中国海海盆在垂直方向上划分为Ekman层、惯性层和摩擦层. Ekman层中的运动由大气风应力驱动,其底部的扰动压力将作为其下惯性层中运动的上边界条件. 惯性层中的运动是由f 平面三维非线性方程在准地转近似下位势涡度守恒控制,由此得到控制惯性层中运动关于扰动压力的三维椭圆型方程. 在惯性层以下考虑到深层的海盆水平尺度很小,由此引进带有底部摩擦的线性控制方程,方程的边界条件为惯性层和摩擦层交界面上的扰动压力连续,沿海盆边界假定海水与相邻的固壁间无热量交换,由此设在海盆边界上扰动温度为零. 在此基础上分别利用惯性层和摩擦层中的椭圆型控制方程计算了相应层次上冬、夏季的扰动压力和准地转流. 结果表明冬季各层上以气旋式环流为主,且随深度的增加流速减小;夏季各层上以反气旋式环流为主,流速也随深度增加而减小. 这在一定程度上和观测事实相符.  相似文献   

2.
中纬度海洋热力状况异常影响大气主要通过两种途径:非绝热加热的直接强迫作用和大气瞬变涡旋反馈的间接强迫作用,而后者的作用并没有被很好地认识.为了进一步理解间接强迫作用的物理机制,本文利用观测资料分析和区域大气模式模拟,研究了伴随冬季北太平洋副热带海洋锋强度变化的中纬度大气场异常,特别是对流层中高层不同频率的涡旋扰动活动的异常.实际观测和数值试验结果均表明,当北太平洋副热带海表面温度锋偏强时,其上空的中纬度大气经向温度梯度增强;对应此时的大气斜压性增强,且中纬度大气西风急流整层加速;然而增强的大气斜压性并不对应一致性增强的大气涡旋扰动活动.中纬度大气的涡旋扰动根据其生命周期,进一步划分为高频(2~7天)和低频(10~90天)涡旋扰动.研究结果表明偏强的北太平洋副热带海洋锋对应着增强的中纬度大气高频涡旋扰动和减弱的低频涡旋扰动;其中,中纬度大气高频扰动活动的增强,将有利于削弱中纬度大气经向温度梯度,从而减弱中纬度大气斜压性;而高频扰动对纬向风倾向项的正贡献,有利于中纬度急流中心北侧及下游区域的西风加速,形成中纬度西风相当正压结构的增强;大气低频扰动的减弱,对中纬度大气纬向风倾向项产生负贡献,不利于急流的纬向均匀化,而其热力强迫异常则有利于维持中纬度对流层中层大气的经向温度梯度.  相似文献   

3.
风生边界急流稳定性的渐近理论   总被引:4,自引:1,他引:3       下载免费PDF全文
观测表明,当冬季盛吹北风时,在南中国海西边界附近将形成一支向南的急流,在一定条件下这支急流可弯曲成波动甚至形成涡旋.本文应用等值浅水模式,采用截断模方法,分析了急流的稳定性,并给出急流上不稳定波出现的条件.分析表明只有当向南的风生急流很强很窄时,由变性的Kelvin波和风应力强迫出的地形Rossby波在长波波段耦合而出现不稳定,不稳定波在波长约200 km时向北传播的相速度约为02 m·s-1,波振幅增长到e倍所需的时间约15天.分析进一步表明,夏季向北的风生流在海洋的西边界附近是稳定的.这些结果在一定程度上解释了观测结果.  相似文献   

4.
热带海盆对热力强迫的线性响应   总被引:1,自引:0,他引:1  
通过对线性两层海洋模式进行正交模求解,得到了热带矩形海盆在热力强迫下的海洋动力场水平结构.在这个线性两层模式中,没有施加风应力,仅考虑了热力强迫下的Rayleigh摩擦和Newton冷却效应.在一种理想化的经向不均匀加热强迫下,动力场表现出类似于风生环流的特征:窄而强的西边界区,宽而弱的东边界区;具有双涡(double-gyre)结构.线性响应中斜压模态比正压模态大一个量级,在响应中占主要地位.  相似文献   

5.
沿岸上升流和沿岸急流的一个半解析理论   总被引:4,自引:2,他引:4       下载免费PDF全文
在考虑了陆架地形后,在垂直海岸的x z剖面上 ,对Boussinesq流体的非线性海洋运动方程求得了总动量守恒、温度守恒和位势涡度守恒的 普 适形式,进而得到流函数所满足的椭圆型二阶偏微分方程,在给定流体沿地形运动的条件下 ,算出问题的解. 计算结果表明,沿岸可以出现上升流也可以出现下沉流,它依赖于海洋的 大尺度背景条件. 计算所得的上升流、沿岸急流、温度的锋区结构与一些观测事实接近.  相似文献   

6.
地面摩擦和大尺度流场是影响锋面气旋结构演变的重要因子,本文使用WRF模式并采用湿物理方案,通过理想化试验,综合考虑陆面摩擦、气旋式扰动相对于急流位置和大尺度流场对锋面气旋结构变化的影响.结果表明:当仅考虑单一因子时,气旋式扰动位于急流南侧和辐合流流场有利于气旋形成Shapiro-Keyser(S-K)模型结构.当同时考虑地面摩擦和大尺度辐合时,气旋式扰动位于急流北侧的气旋发展整体向经典的挪威气旋模型转变;扰动位于急流南侧的的气旋发展则整体呈现S-K模型结构,此时辐合流场有利于S-K模型结构出现.当同时考虑地面摩擦和大尺度辐散时,扰动处于急流北侧的气旋呈现挪威气旋模型结构;由于气旋式扰动穿越急流和辐散流场同时有利于暖锋后弯发展以及冷暖锋距离加大和锋消,扰动处于急流南侧的气旋呈现典型S-K气旋模型结构.这个结果解释了在东亚大陆地区辐散场形势下出现的S-K模型结构气旋个例.  相似文献   

7.
陈宪  钟中  卢伟  唐筱之 《地球物理学报》2014,57(8):2455-2464
东亚副热带高空急流强度变化和天气气候密切相关,本文利用WRF模式输出的高时空分辨率模拟资料研究了东亚副热带高空急流区的中尺度扰动特征,并结合动力学理论,揭示了急流区中尺度扰动产生的可能机制.研究表明,急流轴南侧更容易出现水平尺度为几十公里的高频扰动,这些扰动的时空分布具有波动特征.对高空急流区中出现中尺度扰动区域的拉格朗日Rossby数、Richardson数以及绝对涡度的计算发现,高空急流轴南侧中尺度扰动出现的物理机制与非地转平衡流的不稳定发展有关,并且高空急流强度的大尺度整体变化与急流区中尺度扰动变化的累积效应有关.因此,开展高空急流强度变化规律研究不能忽视其内部中尺度动力过程的作用.  相似文献   

8.
位场解析信号振幅极值位置空间变化规律研究   总被引:6,自引:1,他引:5       下载免费PDF全文
王万银 《地球物理学报》2012,55(4):1288-1299
通过对单一边界、双边界、多边界以及点(线)质量模型重力异常解析信号振幅和重力异常垂向导数解析信号振幅的极值位置空间变化规律研究表明,重力异常垂向导数解析信号振幅和化极磁力异常解析信号振幅的极值位置相同,且与重力异常解析信号振幅的极值位置空间变化规律相似.利用位场解析信号振幅极大值位置能够准确识别单一直立边界地质体的边缘位置,但不能准确识别其它任何形体的边缘位置,其识别结果的偏移量大小随地质体的埋深、水平尺寸以及倾斜程度等变化.虽然重力异常垂向导数解析信号振幅比重力异常解析信号振幅的峰值更加尖锐、横向识别能力更强,其极大值位置更靠近地质体上顶面边缘位置,但均受地质体埋深的影响较大;随着埋深的增加,位场解析信号振幅的极大值位置会快速收敛到形体的"中心位置",其轨迹类似"叉子状";且对多边界模型会出现"极大值位置盲区"而无法识别其边缘位置.通过这些理论研究表明,位场解析信号振幅只能识别单一边界地质体的边缘位置;而不宜用来识别多边界地质体的边缘位置,但可以用来识别多边界地质体的"中心位置".  相似文献   

9.
本文研究了德雷克海峡的打开对海洋环流的影响.德雷克海峡未打开时,南半球中高纬度之间风应力旋度产生的流涡促进了中高纬度之间的热量交换;德雷克海峡打开后,南极绕极流(ACC)形成,绕极流区的强锋面阻隔了南半球低纬度向高纬度的热量传输.基于以上认识,本文利用一个箱式模型分析了德雷克海峡闭合时的风应力和打开时的海洋温度锋面分别对南极底层水(AABW)和北大西洋深层水(NADW)形成的影响.实验发现:(1)德雷克海峡闭合时,风应力产生的流涡强度增大,可导致AABW形成减少、NADW形成增多;南半球高纬度增温,整个大洋底层水的温度也同时升高.(2)德雷克海峡打开时,只有温度梯度达到一定强度才会有AABW形成,并导致南半球高纬度地区和大洋大部分底层水变冷;而当锋面强度小于临界值(本模式中为4.03℃)时,没有AABW形成,海盆中大部分区域的海温都偏高.模式实验结果表明,德雷克海峡打开的过程中,风应力的改变与海洋温度锋面的形成影响了AABW和NADW的形成,从而改变了大洋经向翻转环流的状态.  相似文献   

10.
本文用数值计算方法对极盖区边界变化、其上驱动电势突然增减以及粒子沉降边界随时间变化等情况下,中低纬电离层电位分布及赤道电急流变化进行了研究。结果表明,赤道电急流明显地受到磁层-电离层电动耦合的影响。在白天到午夜的大部分时间内,当驱动势增强和扰动源向低纬扩展时,产生扰时附加东向赤道电急流;反之,有较强的磁层源西向电急流。计算结果解释了观测的主要现象,也表明观测结果的复杂性可能与过程不同阶段上电急流位相变化有关。  相似文献   

11.
1998年长江流域洪水期大气季节内振荡特征及机理研究   总被引:11,自引:0,他引:11  
1998年夏季长江流域洪涝灾害的发生与低纬和中高纬低频气旋在长江流域附近地区的汇合过程有关. 用包含18个动力热力因子及南北边界效应的局地经向环流线性诊断模式将各因子作用分解开来, 并根据1998年的NCEP再分析资料找到造成不同纬度低频气旋的产生、经向传播及相互作用的主要过程. 基于数值模式的定量分析结果, 表明低纬地区低频气旋的产生和传播主要与强积云对流有关的潜热加热、反映越赤道气流影响的边界效应及热量垂直输送作用有关; 而中高纬地区低频气旋的产生和传播则主要与反映西风带扰动的西风动量水平输送和温度平流作用有关, 西风带扰动主要体现为鄂霍次克海阻塞高压及东南侧的切断低压. 高低纬低频气旋在长江流域附近地区的合并, 不但为长江流域发生洪涝提供所需的抬升条件, 也为南海地区低层低频反气旋的形成创造了有利条件. 在来自南海低频反气旋西北侧的暖湿气流和位于长江流域的低频气旋上升运动的共同影响下, 长江流域发生了百年一遇的特大洪水.  相似文献   

12.
夏季东北亚阻塞高压年际变化的一个物理机制   总被引:2,自引:0,他引:2       下载免费PDF全文
根据实际观测资料反演获得描述大气环流演变的空间谱函数后,从改进的高截断谱模式途径出发研究了夏季东北亚阻塞高压年际变化的物理机制.结果表明,前期外部热源强迫的空间分布大致为El Nio型分布时,外部热力强迫导致大气环流演变中波波相互作用主要表现为纬向2波的相互作用;波流相互作用主要表现为经向2波和3波与反映基本流中的经向1波的相互作用.这样使得500 hPa高度场上东北亚地区为一相对正异常区,为夏季东北亚阻塞的频繁发生提供了有利的大气环流背景.而前期外部热源强迫大致为La Nia型分布时,外部热力强迫则导致大气环流演变中波波相互作用主要表现为纬向1波的相互作用;波流相互作用主要表现为经向2波和4波与反映基本流中的经向2波的相互作用.从而使得500 hPa高度场上帆北亚地区出现相对负异常,抑制了夏季东北亚阻塞的发生.  相似文献   

13.
青藏高原东缘中下地壳流与地壳变形   总被引:2,自引:0,他引:2       下载免费PDF全文
尹力  罗纲  孙云强 《地球物理学报》2018,61(10):3933-3950
地壳缩短导致青藏隆升造山是普遍的认识.然而,在青藏东部,越来越多的观测数据和研究支持了中下地壳流与隆升造山的关系.目前,地壳缩短造山机制和中下地壳流造山机制仍然处于争论之中.本文建立了二维黏弹塑性有限元模型,模拟了龙门山断层带的多个地震循环的应变与变形,探讨了无与有中下地壳流情况下,地壳地表的位移、速度与变形的分布和演化;以及有中下地壳流情况下,不同流动范围、速度与黏度对模型结果的影响;并结合地形变观测数据的约束,推测了青藏东缘中下地壳流的流动状态.模拟结果显示,通过对比有和无中下地壳流的模拟结果,发现青藏东部震间的地表垂向速度在变形样式及数值上存在较大差异,即存在地壳流的地表垂向抬升速率显著大于无地壳流;震间在龙门山断层西侧附近产生的垂向凸状隆起随中下地壳流的速度、黏度及通道长度的变化而变化.此外,本文研究结果对青藏其他地区可能存在的地壳流的研究也具有一定的参考意义.  相似文献   

14.
南海海盆三维重力约束反演莫霍面深度及其特征   总被引:3,自引:3,他引:0       下载免费PDF全文
利用南海海盆及周边最新的重力,经过海底地形、沉积层的重力效应改正,并采用岩石圈减薄模型的温度场公式,校正了从张裂边缘到扩张海盆的热扰动重力效应.通过研究区的地震剖面和少量声呐数据得到的莫霍面深度点作为约束,采用基于"起伏界面初始模型"的深度修正量反演迭代公式,反演、计算了研究区的莫霍面深度及地壳厚度.结果表明,海盆区莫霍面深度在8~14 km之间,地壳厚度在3~9 km之间;东部海盆和西南海盆残留扩张中心沿NNE向展布向西南延伸至112°E,莫霍面深度超过12 km,地壳厚度在6 km以上,而西北海盆没有明显的增厚扩张中心;在西南海盆北缘的中沙地块南侧,存在一个近EW向地壳减薄带,地壳厚度在9~10 km;莫霍面深度14 km的等深线和地壳厚度9 km的等值线可指示洋陆边界位置.  相似文献   

15.
北极夏季冰面上近地层特征及热量收支问题   总被引:1,自引:0,他引:1       下载免费PDF全文
应用1999年8月19~24日我国第1次北极考察资料对北极夏季近地层气象要素梯度特征和冰面热量收支问题进行了讨论.北极夏季近地层相对于冰面的相对湿度很大,经常接近于饱和状态,冰温具有明显的日变化,夜间冰面附近冰温梯度较大,白天很小.在冰温垂直分布中20cm冰层温度有时可出现极大值.冰面热量收支计算表明,夜间冰面辐射冷却损失热量主要由冰层向冰面热量输送来补偿.白天冰层的热量主要来源于穿透短波辐射,冰面和以下冰层间的热量交换很低.白天冰面冰雪融化热量是不可忽视的.  相似文献   

16.
位场总水平导数极值位置空间变化规律研究   总被引:5,自引:2,他引:3       下载免费PDF全文
王万银 《地球物理学报》2010,53(9):2257-2270
通过对位场总水平导数函数性质的研究表明,位场总水平导数不是位函数,因而利用位场总水平导数构造新的边缘识别方法时会出现"奇点",使得计算结果的稳定性下降.对单一边界、双边界、多边界模型重力异常总水平导数和重力异常垂向导数总水平导数极值位置的空间变化规律研究表明,重力异常垂向导数总水平导数和化极磁力异常总水平导数的极值位置相同,与重力异常总水平导数的极值位置空间变化规律相似.利用位场总水平导数极大值位置能够准确识别单一直立边界地质体的边缘位置,但不能准确识别其它任何形体的边缘位置,其识别结果的偏移量大小随地质体的埋深、水平尺寸以及倾斜程度等变化,但能收敛于某一固定值;重力异常垂向导数总水平导数比重力异常总水平导数的峰值更加尖锐、横向识别能力更强,其极大值位置更靠近地质体上顶面边缘位置,但存在"次极大值"的影响.  相似文献   

17.
南海北部陆架陆坡流系研究进展   总被引:1,自引:0,他引:1  
受季节性反转的季风强迫、海峡水交换、地形等影响,南海北部陆架陆坡流系呈现复杂多变的形式.南海北部陆坡流、南海暖流、沿岸流及其与之相关的上升流(夏季)和下降流(冬季)系统等构成了南海北部典型的流系.本文回顾了自20世纪90年代以来南海北部陆架陆坡流系的研究进展,总结了黑潮入侵南海、季风、地形、冲淡水浮力热力效应等因素在南海北部陆架陆坡流系中的作用.指出南海北部内区海盆与陆架陆坡流的动力联系、南海暖流是否稳定存在、冬季下降流时空特征及其物质能量输运等方面还需要进一步加强研究.  相似文献   

18.
热带平流层水汽的准两年周期振荡   总被引:5,自引:0,他引:5       下载免费PDF全文
施春华  郑彬  陈月娟  毕云 《地球物理学报》2009,52(10):2428-2435
分析了1993年到2002年10年间HALOE卫星资料的热带平流层水汽年际变率,结果表明:热带平流层水汽混合比在2~5 hPa、10~30 hPa、30~100 hPa有三组显著的准两年周期振荡(QBO)现象;其中2~5 hPa和10~30 hPa水汽QBO呈反位相循环;30~100 hPa水汽QBO有显著上传特性.SOCRATES3模式模拟和诊断结果表明,热带平流层水汽QBO是在纬向风QBO强迫下产生的次级动力、热力因子和化学作用耦合后的结果:上层主要是环流输送引起,中层是环流输送和温度扰动驱动下的化学作用引起,下层是对流层顶水汽冻结层的温度扰动和环流输送引起.  相似文献   

19.
用1993~1999年的TOPEX/Poseidon卫星测高资料, 分析了南海海面高度距平场(SSHA)的平均周年变化; 结合历史水文资料, 反演了多年平均的逐月海面动力地形; 探讨了南海动力地形及其所反映的上层环流季节特征和演变规律. 分析表明, 南海大尺度环流的周年演替可分为4个阶段. 冬季(11~2月)南海环流表现为以北部气旋环流为主的气旋型双圈结构, 相关的特征还包括吕宋海峡的黑潮入侵和加里曼丹岛西北外海的东北向离岸流. 春季(3~4 月)气旋型双圈结构解体, 北部的气旋型环流依然维持, 南部环流则向反气旋型演变, 大尺度环流结构呈现偶极子特征. 夏季(5~7 月)和秋季(8~10月)海盆内部不存在明显封闭的大尺度环流, 环流以西南-东北流向的季风急流为主要特征, 但夏、秋流态有较大差别. 5~7 月季风急流贴中南半岛北上, 在海南岛东南18°N附近沿地形折向东形成反气旋型弯曲, 穿越南海后再折向东北. 8~10 月季风急流在13°N附近即离开中南半岛海岸进入海盆中部, 其流态转变为气旋型. 在春、夏、秋三季, 黑潮的入侵都不明显. 上述变化规律显示南海环流的动力调整在季风盛期过后就已经开始.  相似文献   

20.
1999年楚科奇海台及其周边海域中层与深层水增暖   总被引:5,自引:0,他引:5  
根据我国1999年北极科学考察期间的数据, 研究了楚科奇海台及其邻近海域的温度和盐度分布特征. 观测结果表明, 1999年在连绵600多公里的海域中都发现温度超过0.5℃的现象, 测得的最高温度为0.85℃, 表明北冰洋中层水仍然保持增暖状态. 文中指出了两个重要现象. 第一, 中层水增暖现象存在区域差别, 楚科奇海台内部中层水与陆坡区相比温度高、厚度大、深度浅. 这种不均匀性是非常重要的, 意味着中层水增暖对海冰厚度和范围变化、海气热交换变化方面的贡献也将是水平不均匀的. 海台内部温度偏高的原因在于海台的特殊地貌形成绕流使海台内部与外界水体交换不畅, 热量不容易散失. 第二, 指出了深层水增暖的现象. 1999年温度垂向分布与多年平均历史数据的差表明深层水体也在增暖, 增温深度达1200~1400 m, 增温幅度一般在0.2℃左右. 深层水增暖现象揭示了北冰洋增加的热量有复杂的再分配形式, 表明北冰洋中层水增暖现象已经引起北冰洋热力结构的变化, 指示了全球变化对北冰洋的显著影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号