首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A recent theoretical investigation by Terzieva & Herbst of linear carbon chains, C n where n  ≥ 6, in the interstellar medium has shown that these species can undergo efficient radiative association to form the corresponding anions. An experimental study by Barckholtz, Snow & Bierbaum of these anions has demonstrated that they do not react efficiently with molecular hydrogen, leading to the possibility of detectable abundances of cumulene-type anions in dense interstellar and circumstellar environments. Here we present a series of electronic structure calculations which examine possible anionic candidates for detection in these media, namely the anion analogues of the previously identified interstellar cumulenes C n H and C n −1CH2 and heterocumulenes C n O (where n  = 2–10). The extraordinary electron affinities calculated for these molecules suggest that efficient radiative electron attachment could occur, and the large dipole moments of these simple (generally) linear molecules point to the possibility of detection by radio astronomy.  相似文献   

3.
The formation of molecular hydrogen  (H2)  in the interstellar medium takes place on the surfaces of dust grains. Hydrogen molecules play a role in gas-phase reactions that produce other molecules, some of which serve as coolants during gravitational collapse and star formation. Thus, the evaluation of the production rate of hydrogen molecules and its dependence on the physical conditions in the cloud are of great importance. Interstellar dust grains exhibit a broad size distribution in which the small grains capture most of the surface area. Recent studies have shown that the production efficiency strongly depends on the grain composition and temperature as well as on its size. In this paper, we present a formula that provides the total production rate of  H2  per unit volume in the cloud, taking into account the grain composition and temperature as well as the grain size distribution. The formula agrees very well with the master equation results. It shows that for a physically relevant range of grain temperatures, the production rate of  H2  is significantly enhanced due to their broad size distribution.  相似文献   

4.
5.
A model is proposed for the formation of water ice mantles on grains in interstellar clouds. This occurs by direct accretion of monomers from the gas, be they formed by gas or surface reactions. The formation of the first monolayer requires a minimum extinction of interstellar radiation, sufficient to lower the grain temperature to the point where thermal evaporation of monomers is just offset by monomer accretion from the gas. This threshold is mainly determined by the adsorption energy of water molecules on the grain material; for hydrocarbon material, chemical simulation places this energy between 0.5 and 2 kcal mol−1, which sets the (true) visible extinction threshold at a few magnitudes. However, realistic distributions of matter in a cloud will usually add to this an unrelated amount of cloud core extinction, which can explain the large dispersion of observed (apparent) thresholds. Once the threshold is crossed, all available water molecules in the gas are quickly adsorbed, because the grain cools down and the adsorption energy on ice is higher than on bare grain. The relative thickness of the mantle, and, hence, the slope of  τ3( A v)  depend only on the available water vapour, which is a small fraction of the oxygen abundance. Chemical simulation was also used to determine the adsorption sites and energies of O and OH on hydrocarbons and study the dynamics of formation of water molecules by surface reactions with gaseous H atoms, as well as their chances to stick in situ.  相似文献   

6.
7.
8.
The pure rotational spectrum of homonuclear diatomic molecules in the interstellar medium is strongly forbidden, and no such spectrum has been detected. In regions of high excitation, vibrational emission may occur, as is widely detected in the case of H2 in interstellar shocks and photon-dominated regions. However, it is of considerable interest to know the abundance of homonuclear diatomics in quiescent regions. We propose that vibrational emission from homonuclear diatomic molecules in cold clouds may be detectable, where the excitation is mainly through collisions with non-thermal electrons arising from the cosmic-ray ionization of H2. As an example, we estimate the intensity of emission from N2 in cold, dark interstellar clouds. We show that such emission is at the limit of detectability with current technology. Other excitation mechanisms may also contribute and enhance this emission.  相似文献   

9.
10.
The possibility of nitrogen isotopic fractionation owing to ion–molecule exchange reactions involving the most abundant N-containing species in dense interstellar clouds has been explored. We find that exchange reactions between N atoms and N-containing ions have most influence on the fractionation, although the extent of fractionation is too small to be readily detectable.  相似文献   

11.
12.
Transient microstructure in the diffuse interstellar medium (ISM) has been observed towards Galactic and extragalactic sources for decades, usually in lines of atoms and ions, and, more recently, in molecular lines. Evidently, there is a molecular component to the transient microstructure. In this paper, we explore the chemistry that may arise in such microstructure. We use a photodissociation region (PDR) code to model the conditions of relatively high density, low temperature, very low visual extinction and very short elapsed time that are appropriate for these objects. We find that there is a well-defined region of parameter space where detectable abundances of molecular species might be found. The best matching models are those where the interstellar microstructure is young (<100 yr), small (∼100 au) and dense  (>104 cm−3)  .  相似文献   

13.
A model is constructed of the material in front of the star Cygnus OB2 no. 12 in which dense cores are embedded in diffuse clumps of gas. The model reproduces the measured abundances of C2 and CO, and predicts a column density of 91010 cm2 for HCO+.  相似文献   

14.
Despite the low elemental abundance of atomic deuterium in the interstellar medium (ISM), observational evidence suggests that several species, both in the gas phase and in ices, could be heavily fractionated. We explore various aspects of deuterium enrichment by constructing a chemical evolution model in both gaseous and granular phases. Depending on various physical parameters, gases and grains are allowed to interact with each other through the exchange of their chemical species. It is known that HCO+ and N2H+ are two abundant gas phase ions in the ISM and, their deuterium fractionation is generally used to predict the degree of ionization in the various regions of a molecular cloud. For a more accurate estimation, we consider the density profile of a collapsing cloud. The radial distributions of important interstellar molecules, along with their deuterated isotopomers, are presented. Quantum chemical simulations are computed to study the effects of isotopic substitution on the spectral properties of these interstellar species. We calculate the vibrational (harmonic) frequencies of the most important deuterated species (neutral and ions). The rotational and distortional constants of these molecules are also computed in order to predict the rotational transitions of these species. We compare vibrational (harmonic) and rotational transitions as computed by us with existing experimental and theoretical results. It is hope that our results will assist observers in detecting several hitherto unobserved deuterated species.  相似文献   

15.
16.
17.
18.
19.
20.
The desorption of molecular species from ice mantles back into the gas phase in molecular clouds results from a variety of very poorly understood processes. We have investigated three mechanisms: desorption resulting from H2 formation on grains, direct cosmic ray heating and cosmic ray-induced photodesorption. Whilst qualitative differences exist between these processes (essentially deriving from the assumptions concerning the species selectivity of the desorption and the assumed threshold adsorption energies, E t), all the three processes are found to be potentially very significant in dark cloud conditions. It is therefore important that all three mechanisms should be considered in studies of molecular clouds in which freeze-out and desorption are believed to be important.
Employing a chemical model of a typical static molecular core and using likely estimates for the quantum yields of the three processes, we find that desorption by H2 formation probably dominates over the other two mechanisms. However, the physics of the desorption processes and the nature of the dust grains and ice mantles are very poorly constrained. We therefore conclude that the best approach is to set empirical constraints on the desorption, based on observed molecular depletions – rather than try to establish the desorption efficiencies from purely theoretical considerations. Applying this method to one such object (L16 89B) yields upper limits to the desorption efficiencies that are consistent with our understanding of these mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号