首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
任兴月  陶军  彭伟 《海洋工程》2018,36(4):78-87
为了研究斜向入射波浪,基于三维不可压缩两相流模型,开发了一套圆形数值波浪水池数值模型。在圆形波浪水池中,通过源项造波法成功生成了任意入射方向的波浪,并且利用人工摩擦项模拟阻尼区以数值耗散反射波浪。模型基于嵌入式多块网格体系,采用FVM法(finite volume method)离散Navier-Stokes方程,VOF法(volume of fluid)追踪自由水面。试验结果表明,斜向入射波浪的模拟结果与理论值基本一致,圆形波浪水池在模拟斜向入射波浪时,有效区域的面积较传统波浪水池显著增大,而且有效区域受波浪入射角度的影响也较小。同时,通过叠加多列斜向入射波浪,模拟出了多向交叉波列,并通过与理论结果对比,发现其具有较高的精度。  相似文献   

2.
Internal waves driven by external excitation constitute important phenomena that are often encountered in environmental fluid mechanics. In this study, a pseudospectral σ-transformation model is used to simulate parametric excitation of stratified liquid in a two-layer rectangular tank. The σ-transformation maps the physical domain including the liquid free surface, the interface between the liquid layers, and the bed, onto a pair of fixed rectangular computational domains corresponding to the two layers. The governing equation and boundary conditions are discretised using Chebyshev collocation formulae. The numerical model is verified for two analytical sloshing problems: horizontal excitation of constant density liquid in a rectangular tank, and vertical excitation of stratified liquid in a rectangular tank. A detailed analysis is provided of liquid motions in a shallow water tank due to excitations in the horizontal and the vertical directions. Also, the effect of pycnocline on the wave motions and patterns is studied. It is found that wave regimes and patterns are considerably influenced by the pycnocline, especially when the excitation frequency is large. The present study demonstrates that a pseudospectral σ-transformation is capable to model non-linear sloshing waves in a two-layer rectangular tank.  相似文献   

3.
苏高飞  勾莹  滕斌 《海洋工程》2023,41(3):1-13
为高效准确地对完全非线性波浪与二维固定结构物的相互作用进行模拟分析,建立了二维完全非线性时域耦合模型。耦合模型将计算域划分为靠近结构物的内域和远离结构物的外域,每个区域均采用满足完全非线性自由水面边界条件的波浪模型进行求解。在内域使用Laplace方程描述流体运动并采用高阶边界元法(BEM)对其进行求解;而在没有结构物的外域,波浪运动的控制方程为Irrotational Green-Naghdi(IGN)方程并采用有限元法(FEM)对其进行求解。内域和外域通过一段重叠区域进行耦合,从而实现模型间变量的传递。首先利用耦合模型分别对规则波的传播、直墙前立波的生成以及相关物理模型试验进行模拟,数值结果与精确解和试验结果的良好吻合验证了耦合模型耦合方式的合理性以及处理非线性问题的准确性;然后使用耦合模型模拟分析了波浪与固定结构物间的相互作用,并将结果与线性解析解以及完全非线性BEM模型的结果进行了对比分析,进一步证明了耦合模型的正确性与高效性。  相似文献   

4.
Internal inlet for wave generation and absorption treatment   总被引:1,自引:0,他引:1  
A new method of implementing, in two-dimensional (2-D) Navier–Stokes equations, a numerical internal wave generation in the finite volume formulation is developed. To our knowledge, the originality of this model is on the specification of an internal inlet velocity defined as a source line for the generation of linear and non-linear waves. The use of a single cell to represent the source line and its transformation to an internal boundary condition proved to be an interesting alternative to the common procedure of adding a mass source term to the continuity equation within a multi-cell rectangular region. Given the reduction of the source domain to a one-dimensional region, this simple new type of source introduced less perturbation than the 2-D source type. This model was successfully implemented in the PHOENICS code (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series). In addition, the volume of fluid (VOF) fraction was used to describe the free surface displacements. A friction force term was added to the momentum transport equation in the vertical direction, in order to enhance wave damping, within relatively limited number of cells representing the sponge layers at the open boundaries. For monochromatic wave, propagating on constant water depth, numerical and analytical results showed good agreements for free surface profiles and vertical distribution of velocity components. For solitary wave simulation, the wave shape and velocity were preserved; while, small discrepancy in the tailing edge of the free surface profiles was observed. The suitability of this new numerical wave generation model for a two source lines extension was investigated and proven to be innovative. The comparisons between numerical, analytical and experimental results showed that the height of the merging waves was correctly reproduced and that the reflected waves do not interact with the source lines.  相似文献   

5.
In the present study, three-dimensional sloshing phenomena occurring in liquid cargo tanks are numerically simulated. The Navier-Stokes equations and continuity equation are used for the governing equations, and solved with a finite difference method in a rectangular fixed staggered mesh system. The positions of free surface are defined by the Marker density method satisfying the free-surface boundary conditions, and the flows of the gas and liquid regions are simulated simultaneously. The irregular leg length and star method is employed on the cells near the free surface for the computations of pressure. The computation results are compared with other experimental results to verify the consistency of the present numerical method, and the agreements are reasonably good. Furthermore, the flow characteristics inside a partially filled liquid tank of a real sized ship oscillating regularly and irregularly are computed to verify the possibility of practical application of the present method.  相似文献   

6.
The finite element method(FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions.The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions.The finite element linear system is solved by the conjugate gradient(CG) method with a symmetric successive overelaxlation(SSOR) preconditioner.The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation.Numerical examples are given by an array of floating wedgeshaped cylinders and rectangular cylinders.Results are provided for heave motions including wave elevations,profiles and hydrodynamic forces.Comparisons are made in several cases with the results obtained from the second order solution in the time domain.It is found that the wave amplitude in the middle region of the array is larger than those in other places,and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

7.
A fast time-domain method is developed in this paper for the real-time prediction of the six degree of freedom motions of a vessel traveling in an irregular seaway in infinitely deep water. The fully coupled unsteady ship motion problem is solved by time-stepping the linearized boundary conditions on both the free surface and body surface. A velocity-based boundary integral method is then used to solve the Laplace equation at every time step for the fluid kinematics, while a scalar integral equation is solved for the total fluid pressure. The boundary integral equations are applied to both the physical fluid domain outside the body and a fictitious fluid region inside the body, enabling use of the fast Fourier transform method to evaluate the free surface integrals. The computational efficiency of the scheme is further improved through use of the method of images to eliminate source singularities on the free surface while retaining vortex/dipole singularities that decay more rapidly in space. The resulting numerical algorithm runs 2–3 times faster than real time on a standard desktop computer. Numerical predictions are compared to prior published results for the transient motions of a hemisphere and laboratory measurements of the motions of a free running vessel in oblique waves with good agreement.  相似文献   

8.
The finite element method (FEM) is employed to analyze the resonant oscillations of the liquid confined within multiple or an array of floating bodies with fully nonlinear boundary conditions on the free surface and the body surface in two dimensions. The velocity potentials at each time step are obtained through the FEM with 8-node quadratic shape functions. The finite element linear system is solved by the conjugate gradient (CG) method with a symmetric successive overelaxlation (SSOR) preconditioner. The waves at the open boundary are absorbed by the combination of the damping zone method and the Sommerfeld-Orlanski equation. Numerical examples are given by an array of floating wedge- shaped cylinders and rectangular cylinders. Results are provided for heave motions including wave elevations, profiles and hydrodynamic forces. Comparisons are made in several cases with the results obtained from the second order solution in the time domain. It is found that the wave amplitude in the middle region of the array is larger than those in other places, and the hydrodynamic force on a cylinder increases with the cylinder closing to the middle of the array.  相似文献   

9.
C.Z. Wang  G.X. Wu  K.R. Drake 《Ocean Engineering》2007,34(8-9):1182-1196
Interactions between water waves and non-wall-sided cylinders are analyzed based on velocity potential theory with fully nonlinear boundary conditions on the free surface and the body surface. The finite element method (FEM) is adopted together with a 3D mesh generated through an extension of a 2D Delaunay grid on a horizontal plane along the depth. The linear matrix equation for the velocity potential is constructed by imposing the governing equation and boundary conditions through the Galerkin method and is solved through an iterative method. By imposing the gradient of the potential equal to the velocity, the Galerkin method is used again to obtain the velocity field in the fluid domain. Simulations are made for bottom mounted and truncated cylinders with flare in a numerical tank. Periodic waves and wave groups are generated by a piston type wave maker mounted on one end of the tank. Results are obtained for forces, wave profiles and wave runups. Further simulations are made for a cylinder with flare subjected to forced motion in otherwise still open water. Results are provided for surge and heave motion in different amplitudes, and for a body moving in a circular path in the horizontal plane. Comparisons are made in several cases with the results obtained from the second order solution in the time domain.  相似文献   

10.
A numerical model for wave propagation in a harbour is verified by use of physical models.The extended time-dependent mild slope equation is employed as the governing equation,and the model is solved by use of ADI method containing the relaxation factor.Firstly,the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests,and it is regarded as the basis for simulating partial reflection boundaries of the numerical model.Then model tests on refraction,diffraction and reflection of waves in a harbour are performed to measure wave height distribution.Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.  相似文献   

11.
港域波浪数学模型的改进与验证   总被引:2,自引:0,他引:2  
通过物理模型对改进的港内波浪传播变形数学模型进行验证。该数学模型以推广的时变缓坡方程为控制方程,采用含松弛因子的ADI法求解,并对波浪反射和透射边界模拟方法进行改进。先通过物理模型试验确定斜向浪入射条件下抛石防波堤前的波浪反射系数,作为数学模型中部分反射边界模拟的依据。然后进行了一个典型港口内波浪折射、绕射和反射的模型试验,测量港内波浪分布。对比模型试验和数学模型计算的结果表明,数学模型可较好地模拟港内复杂地形和边界条件下规则波和不规则波的传播变形。  相似文献   

12.
Nonlinear interactions between waves and floating bodies are investigated using the weakly compressible Smoothed Particle Hydrodynamic (WCSPH) method. An improved algorithm based on the dynamic boundary particles (DBPs) is proposed to treat the moving boundary of the floating body. The force exerted on the floating body boundary particle by the particles surrounding it is evaluated using the volume integration of the stress tensors obtained from the momentum equation in its compact support. The improved WCSPH model is validated by the experimental results. The numerical test cases of the vertical oscillation of a rectangular box, the damped rolling oscillation of a floating box and the wave forces on a fixed rectangular box are then carried out to demonstrate the performance of the proposed model. Finally the evolution in time of the dynamic response of the freely floating body under nonlinear waves are discussed and compared with experimental results.  相似文献   

13.
This paper presents CCHE2D-NHWAVE, a depth-integrated non-hydrostatic finite element model for simulating nearshore wave processes. The governing equations are a depth-integrated vertical momentum equation and the shallow water equations including extra non-hydrostatic pressure terms, which enable the model to simulate relatively short wave motions, where both frequency dispersion and nonlinear effects play important roles. A special type of finite element method, which was previously developed for a well-validated depth-integrated free surface flow model CCHE2D, is used to solve the governing equations on a partially staggered grid using a pressure projection method. To resolve discontinuous flows, involving breaking waves and hydraulic jumps, a momentum conservation advection scheme is developed based on the partially staggered grid. In addition, a simple and efficient wetting and drying algorithm is implemented to deal with the moving shoreline. The model is first verified by analytical solutions, and then validated by a series of laboratory experiments. The comparison shows that the developed wave model without the use of any empirical parameters is capable of accurately simulating a wide range of nearshore wave processes, including propagation, breaking, and run-up of nonlinear dispersive waves and transformation and inundation of tsunami waves.  相似文献   

14.
The behavior of a highly deformable membrane to ocean waves was studied by coupling a nonlinear boundary element model of the fluid domain to a nonlinear finite element model of the membrane. The hydrodynamic loadings induced by water waves are computed assuming large body hydrodynamics and ideal fluid flow and then solving the transient diffraction/radiation problem. Either linear waves or finite amplitude waves can be assumed in the model and thus the nonlinear kinematic and dynamic free surface boundary conditions are solved iteratively. The nonlinear nature of the boundary condition requires a time domain solution. To implicitly include time in the governing field equation, Volterra's method was used. The approach is the same as the typical boundary element method for a fluid domain where the governing field equation is the starting point. The difference is that in Volterra's method the time derivative of the governing field equation becomes the starting point.The boundary element model was then coupled through an iterative process to a finite element model of membrane structures. The coupled model predicts the nonlinear interaction of nonlinear water waves with highly deformable bodies. To verify the coupled model a large scale test was conducted in the OH Hinsdale wave Research Laboratory at Oregon State University on a 3-ft-diameter fabric cylinder submerged in the wave tank. The model data verified the numerical prediction of the structure displacements and of the changes in the wave field.The boundary element model is an ideal modeling technique for modeling the fluid domain when the governing field equations is the Laplace equation. In this case the nonlinear boundary element model was coupled with a finite element model of membrane structures, but the model could have been coupled with other finite element models of more rigid structures, such as a pontoon floating breakwater.  相似文献   

15.
An improvement on the simulation of outgoing waves on a time dependent numerical model for water wave propagation in the nearshore region is presented. The governing equations consist of a system of first order partial differential equations (PDEs), the equation of continuity and the equation of motion. A comparative study of first order radiation boundary conditions (BCs) and first order radiation BCs combined with sponge layers is presented for cases where outgoing waves leave the numerical domain of calculation through the open boundary. A reduction of spurious reflections from the numerical open boundaries can be obtained with an irrelevant increase in terms of computational cost.  相似文献   

16.
Unsteady nonlinear wave motions on the free surface in shallow water and over slopes of various geometries are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier–Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. Either linear or Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with various wave periods and sea bottom slopes in surf zone. The results are compared with other existing computational and experimental results. Agreement between the experimental data and the computation results is good.  相似文献   

17.
淹没矩形防波堤透反射系数特性研究   总被引:3,自引:1,他引:2  
采用解析方法研究了斜向入射波作用下淹没矩形防波堤的透反射系数特性.首先利用特征函数展开法导出了绕射势函数的分析解和透反射系数的计算公式,然后利用边界元方法验证了解析解,在此基础上利用解析解分析了若干工况下的防波堤透反射特性.计算结果表明,淹没矩形防波堤截面的宽度、高度和相对位置以及入射角的改变都不同程度影响反射系数和透射系数.在中等深度条件下,对于一定频率的波浪,位置和尺寸适当的淹没矩形堤可以反射大部分斜向入射波.研究结果对设计淹没的矩形防波堤具有重要的参考价值.  相似文献   

18.
An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves. The scattering potentials are obtained by means of the eigenfunction expansion method, and expressions for the reflection and transmission coefficients are determined. The boundary element method is employed to verify the correctness of the present analytical method. The DSRBs have better performance than the single submerged rectangular block (SSRB) in certain cases. The reflection and transmission properties of the DSRBs are investigated for some specific cases, and the influences of the geometric parameters are also presented.  相似文献   

19.
双淹没矩形体的透反射特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
刘鹏飞  游亚戈  胡城 《海洋学报》2007,29(1):133-138
采用解析方法研究了斜向入射波作用下双淹没矩形体的透反射系数特性.首先利用特征函数展开法导出了绕射势函数的分析解并进一步得到透反射系数的计算公式,然后利用边界元方法验证了解析解.与单个的淹没矩形体相比,双淹没矩形体在一定范围内有较高的反射系数.最后利用解析解分析了若干工况下的双淹没矩形体的透反射特性,给出了影响透反射系数的几何因素.  相似文献   

20.
在时域内对二维自由面条件和远方辐射条件进行数值模拟,自由面条件采用先积分后离散的处理方式,远方条件采用匹配积分方程的方法和透射理论的人工边界方法处理。分别计算了圆柱与水面直交和斜交时的水动力系数以及摇板造波问题的速度势,计算结果与文献值和理论值符合程度良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号