首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the escape of particles from cosmic ray modified shocks   总被引:1,自引:0,他引:1  
Stationary solutions to the problem of particle acceleration at shock waves in the non-linear regime, when the dynamical reaction of the accelerated particles on the shock cannot be neglected, are known to show a prominent energy flux escaping from the shock towards upstream infinity. On physical grounds, the escape of particles from the upstream region of a shock has to be expected in all those situations in which the maximum momentum of accelerated particles,   p max  , decreases with time, as is the case for the Sedov–Taylor phase of expansion of a shell supernova remnant, when both the shock velocity and the cosmic ray induced magnetization decrease. In this situation, at each time t , particles with momenta larger than   p max( t )  leave the system from upstream, carrying away a large fraction of the energy if the shock is strongly modified by the presence of cosmic rays. This phenomenon is of crucial importance for explaining the cosmic ray spectrum detected at the Earth. In this paper, we discuss how this escape flux appears in the different approaches to non-linear diffusive shock acceleration, and especially in the quasi-stationary semi-analytical kinetic ones. We apply our calculations to the Sedov–Taylor phase of a typical supernova remnant, including in a self-consistent way particle acceleration, magnetic field amplification and the dynamical reaction on the shock structure of both particles and fields. Within this framework, we calculate the temporal evolution of the maximum energy reached by the accelerated particles and of the escape flux towards upstream infinity. The latter quantity is directly related to the cosmic ray spectrum detected at the Earth.  相似文献   

2.
3.
The maximum momentum of particles accelerated at cosmic ray modified shocks   总被引:1,自引:0,他引:1  
Particle acceleration at non-relativistic shocks can be very efficient, leading to the appearance of non-linear effects due to the dynamical reaction of the accelerated particles on the shock structure and to the non-linear amplification of the magnetic field in the shock vicinity. The value of the maximum momentum, p max, in these circumstances cannot be estimated using the classical results obtained within the framework of test-particle approaches. We provide here the first attempt at estimating p max in the cosmic ray modified regime, taking into account the non-linear effects mentioned above.  相似文献   

4.
《Astroparticle Physics》2011,34(5-6):307-311
We present here a semi-analytical solution of the problem of particle acceleration at non-linear shock waves with a free-escape boundary at some location upstream. This solution, besides allowing us to determine the spectrum of particles accelerated at the shock front, including the shape of the cutoff at some maximum momentum, also allows us to determine the spectrum of particles escaping the system from upstream. This latter aspect of the problem is crucial for establishing a connection between the accelerated particles in astrophysical sources, such as supernova remnants, and the cosmic rays observed at the Earth. An excellent approximate solution, which leads to a computationally fast calculation of the structure of shocks with an arbitrary level of cosmic ray modification, is also obtained.  相似文献   

5.
In the present paper we discuss the modifications introduced into the first-order Fermi shock acceleration process due to a finite extent of diffusive regions near the shock or due to boundary conditions leading to an increased particle escape upstream and/or downstream of the shock. In the simple example of the planar shock wave considered we idealize the escape phenomenon by imposing a particle escape boundary at some distance from the shock. The presence of such a boundary (or boundaries) leads to coupled steepening of the accelerated particle spectrum and decreasing of the acceleration time scale. It allows for a semi-quantitative evaluation and, in some specific cases, also for modelling of the observed steep particle spectra as a result of the first-order Fermi shock acceleration. We also note that the particles close to the upper energy cut-off are younger than the estimate based on the respective acceleration time scale. In Appendix A we present a new time-dependent solution for infinite diffusive regions near the shock allowing for different constant diffusion coefficients upstream and downstream of the shock.  相似文献   

6.
Accompanied by flares and coronal mass ejections, the symbiotic coronal and interplanetary fast shock waves have become a hot topic in particle acceleration. Under the condition of quasi-parallel propagation, we construct a numerical method of solving one-dimensional transport equation, and thereby exploring the physical relationships between the distribution of the accelerated ions and the parameters of the shock waves and background plasmas. Considering the diffusive coefficient as a constant and a function of energy, respectively, the results of calculations of finite free escape boundaries show that (1) the energetic particles approximately exhibit a double power-law distribution and the spectral index decreases gradually from 10.2 to 2.4 in the low energy region of 3-10MeV with the increase of the acceleration time; (2) with the increase of the compression ratio of the shock from 2 to 4, the spectral index decreases from 3.2 to 2.2 at a given time and in the same energy range; (3) when the finite upstream and downstream escape boundaries decrease from 5 to 2, the spectral index of the particle energy spectrum increases from 2.4 to 3.3, and the acceleration efficiency of particles decreases; (4) the spectral index decreases from 2.4 to 0.9 with the increase of the initial inject energy of the particles; (5) when the diffusive coefficient is directly proportional to the energy of the particles, the spectral index increases from 2.2 to 4.3 as compared with the case of constant diffusive coefficient.  相似文献   

7.
We study cosmic-ray acceleration in young Type Ia Supernova Remnants (SNRs) by means of test-particle diffusive shock acceleration theory and 1-D hydrodynamical simulations of their evolution. In addition to acceleration at the forward shock, we explore the particle acceleration at the reverse shock in the presence of a possible substantial magnetic field, and consequently the impact of this acceleration on the particle spectra in the remnant. We investigate the time evolution of the spectra for various time-dependent profiles of the magnetic field in the shocked region of the remnant. We test a possible influence on particle spectra of the Alfvénic drift of scattering centers in the precursor regions of the shocks. In addition, we study the radiation spectra and morphology in a broad band from radio to gamma-rays. It is demonstrated that the reverse shock contribution to the cosmic-ray particle population of young Type Ia SNRs may be significant, modifying the spatial distribution of particles and noticeably affecting the volume-integrated particle spectra in young SNRs. In particular spectral structures may arise in test-particle calculations that are often discussed as signatures of non-linear cosmic-ray modification of shocks. Therefore, the spectrum and morphology of emission, and their time evolution, differ from pure forward-shock solutions.  相似文献   

8.
The dynamical reaction of the particles accelerated at a shock front by the first-order Fermi process can be determined within kinetic models that account for both the hydrodynamics of the shocked fluid and the transport of the accelerated particles. These models predict the appearance of multiple solutions, all physically allowed. We discuss here the role of injection in selecting the real solution, in the framework of a simple phenomenological recipe, which is a variation of what is sometimes referred to as thermal leakage. In this context we show that multiple solutions basically disappear and when they are present they are limited to rather peculiar values of the parameters. We also provide a quantitative calculation of the efficiency of particle acceleration at cosmic ray modified shocks and we identify the fraction of energy which is advected downstream and that of particles escaping the system from upstream infinity at the maximum momentum. The consequences of efficient particle acceleration for shock heating are also discussed.  相似文献   

9.
We solve the nonlinear problem of the dynamics of a steady-state, spherically symmetric stellar wind by taking into account particle acceleration to relativistic energies near the shock front. The particles are assumed to be accelerated through the Fermi mechanism, interacting with stellar-wind turbulence and crossing many times the shock front that separates the supersonic and subsonic stellar-wind regions. We take into account the influence of the accelerated particles on hydrodynamic plasma-flow parameters. Our method allows all hydrodynamic parameters of the shock front and plasma in the supersonic region to be determined in a self-consistent way and the accelerated-particle energy spectrum to be calculated. Our numerical and analytic calculations show that the plasma compression ratio at the shock front increases compared to the case where there are no relativistic particles and that the velocity profile in the supersonic region acquires a characteristic kink. The shape of the energy spectrum for the accelerated particles and their pressure near the front are essentially determined by the presumed dependence of the diffusion coefficient on particle energy, which, in turn, depends on the scale distribution of turbulent pulsations and other stellar-wind inhomogeneities.  相似文献   

10.
We investigate the generation mechanism of long-wavelength Alfvénic disturbances near the front of a collisionless shock that propagates in a partially ionized plasma. The wave generation and dissipation rates are calculated in the linear approximation. The instability is attributable to a current of energetic particles upstream of the shock front. The generation of long-wavelength magnetic fluctuations is most pronounced for strong shocks, but the effect is retained for shocks with a moderate particle acceleration efficiency without any noticeable modification of the shock structure by the pressure of accelerated particles. The mode generation time for supernova remnants in a partially ionized interstellar medium is shown to be shorter than their age. Long-wavelength magnetic disturbances determine the limiting energies of the particles accelerated at a shock by the Fermimechanism. We discuss the application of the mechanism under consideration to explaining the observed properties of the SN 1006 remnant.  相似文献   

11.
We consider the self-similar problem of a supernova explosion in a radially inhomogeneous medium by taking into account the generation of accelerated relativistic particles. The initial density of the medium is assumed to decrease with distance from the explosion center as a power law, ρ 0 = A/r θ. We use a two-fluid approach in which the total pressure in the medium is the sum of the circumstellar gas pressure and the relativistic particle pressure. The relativistic particle pressure at the shock front is specified as an external parameter. This approach is applicable in the case where the diffusion coefficient of accelerated particles is small and the thickness of the shock front is much smaller than its radius. We have numerically solved a system of ordinary differential equations for the dimensionless quantities that describe the velocity and density behind the shock front as well as the nonrelativistic gas and relativistic particle pressures for various parameters of the inhomogeneity of the medium and various compression ratios of the medium at the shock front. We have established that the shock acceleration of cosmic rays affects most strongly the formation of a supernova shell (making it thinner) in a homogeneous circumstellar medium. A decrease in the circumstellar matter density with distance from the explosion center causes the effect of shock-accelerated relativistic particles on the supernova shell formation to weaken considerably. Inhomogeneity of the medium makes the shell thicker and less dense, while an increase in the compression ratio of the medium at the shock front causes the shell to become thinner and denser. As the relativistic particle density increases, the effect of circumstellar matter inhomogeneity on the shell formation becomes weaker.  相似文献   

12.
Shock surfing acceleration   总被引:1,自引:0,他引:1  
Analytical and numerical analysis identify shock surfing acceleration as an ideal pre-energization mechanism for the slow pick-up ions at quasiperpendicular shocks. After gaining sufficient energy by shock surfing, pick-up ions undergo diffusive acceleration to reach their observed energies. Energetic ions upstream of the cometary bow shock, acceleration of solar energetic particles by magnetosonic waves in corona, ion enhancement in interplanetary shocks, generation of anomalous cosmic rays from interstellar pick-up ions at the termination shock are some of the cases where shock surfing acceleration apply. Inclusion of the lower-hybrid wave turbulence into the laminar model of shock surfing can explain the preferential acceleration of heavier particles as observed by Voyager at the termination shock. At relativistic energies, unlimited acceleration of ions is theoretically possible; because for sufficiently strong shocks main limitation of the mechanism, caused by the escape of accelerated particles downstream of the shock during acceleration no longer exists.  相似文献   

13.
We solve the self-consistent problem of the generation of a static magnetic field by the electric current of accelerated particles near a strong plane MHD shock front. We take into account the back reaction of the field on the particle diffusion tensors and the background plasma parameters near the front. Various states that differ significantly in static magnetic-field strength are shown to be possible near a strong front. If the initial field has a component normal to the front, then its components parallel to the front are suppressed by accelerated particles by several orders of magnitude. Only the component perpendicular to the front remains. This field configuration for uniform particle injection at the front does not lead to the generation of an additional field, and, in this sense, it is stable. If the initial field is parallel to the front, then either its significant enhancement by two or three orders of magnitude or its suppression by several orders of magnitude is possible. The phenomenon under consideration is an example of the self-organization of plasma with a magnetic field in a strongly nonequilibrium system. It can significantly affect the efficiency of particle acceleration by the shock front and the magnetobremsstrahlung of the accelerated particles.  相似文献   

14.
The origin of radio emission from plerions is considered. Recent observations suggest that radio-emitting electrons are presently accelerated rather than having been injected at early stages of the plerion evolution. The observed flat spectra without a low-frequency cut-off imply an acceleration mechanism that raises the average particle energy by orders of magnitude but leaves most of the particles at an energy of less than approximately a few hundred MeV. It is suggested that annihilation of the alternating magnetic field at the pulsar wind termination shock provides the necessary mechanism. Toroidal stripes of opposite magnetic polarity are formed in the wind emanating from an obliquely rotating pulsar magnetosphere (the striped wind). At the termination shock, the flow compresses and the magnetic field annihilates by driven reconnection. Jump conditions are obtained for the shock in a striped wind. It is shown that the post-shock magnetohydrodynamic parameters of the flow are the same as if the energy of the alternating field had already been converted into plasma energy upstream of the shock. Therefore, the available estimates of the ratio of the Poynting flux to the matter energy flux, σ, should be attributed not to the total upstream Poynting flux but only to that associated with the average magnetic field. A simple model for the particle acceleration in the shocked striped wind is presented.  相似文献   

15.
We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration. The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV–TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars.  相似文献   

16.
We present a semi-analytical kinetic calculation of the process of non-linear diffusive shock acceleration (NLDSA) which includes the magnetic field amplification due to cosmic ray induced streaming instability, the dynamical reaction of the amplified magnetic field and the possible effects of turbulent heating. The approach is specialized to parallel shock waves, and the parameters we chose are the ones appropriate to forward shocks in supernova remnants. Our calculation allows us to show that the net effect of the amplified magnetic field is to enhance the maximum momentum of accelerated particles while reducing the concavity of the spectra, with respect to the standard predictions of NLDSA. This is mainly due to the dynamical reaction of the amplified field on the shock, which notably reduces the modification of the shock precursor. The total compression factors which are obtained for parameters typical of supernova remnants are   R tot∼ 7–10  , in good agreement with the values inferred from observations. The strength of the magnetic field produced through excitation of streaming instability is found in good agreement with the values inferred for several remnants if the thickness of the X-ray rims is interpreted as due to severe synchrotron losses of high-energy electrons. We also discuss the relative role of turbulent heating and magnetic dynamical reaction in driving the reduction of the precursor modification.  相似文献   

17.
A nonlinear model of cosmic-ray acceleration at the shock fronts in the supernova remnants W28, W44, and IC433 is investigated. The hydrodynamic evolution of a supernova remnant, including the shock modification by the pressure of accelerated particles and the streaming instability of particles upstream of the shock propagating in a partially ionized interstellar gas, is modeled. The electromagnetic radiation generated by accelerated particles is calculated and compared with observations in a wide range of photon energies.  相似文献   

18.
The acceleration of relativistic particles is considered during their intersection with hydromagnetic shock fronts in the presence of randomly distributed large-scale magnetic fields. In a series of astronomical objects, the Larmor radius of the relativistic particles exceeds the width of the shock front. In this case there is a change in the adiabatic invariant which results in an increase in the energy of the particle when it crosses the front in any direction. We have proved that the adiabatic part of the energy change will be partially or completely compensated by its reverse change in the weaker regions of the magnetic field. The acceleration mechanism considered is found to be more effective than the Fermi mechanism.If the mean free path of the particles is much less than the distance between the shock fronts, magnetic small-scale fluctuations cause further scattering of the particles. In this case the particles following and crossing the front will return to it. After reversed crossing, a fraction of the particles-defined by the ratio of the front speed to the particle velocity or of the distance between the fronts to the free path — will not return to the front. It is proved that for both large and small free paths the rates at which the particle gains energy are nearly the same.  相似文献   

19.
To study the macroscopic acceleration process for non-thermal particles at the front of MHD shock waves, two limiting treatments, namely the “adiabatic” and the “kink” treatments have been developed. They correspond to cases of (particle gyroradius)/(width of shock transition region) ? 1 and ? 1, respectively. The effects of the acceleration process on energy and pitch angle distributions of reflected particles are examined by using each of these treatments and results are compared. It is shown that these two treatments give almost the same energy and pitch angle distribution in the case of nearly-perpendicular shock waves. In the case of nearly-parallel shock waves, the pitch angle distributions differ significantly, there being reflected particles in the adiabatic loss cone when the kink treatment is employed, while the ranges of the energy distribution for these two treatments do not differ greatly. Analytic representation for the acceleration in the adiabatic treatment is given for the later usage.  相似文献   

20.
Particle acceleration by ultrarelativistic shocks: theory and simulations   总被引:1,自引:0,他引:1  
We consider the acceleration of charged particles near ultrarelativistic shocks, with Lorentz factor     . We present simulations of the acceleration process and compare these with results from semi-analytical calculations. We show that the spectrum that results from acceleration near ultrarelativistic shocks is a power law,     , with a nearly universal value     for the slope of this power law.
We confirm that the ultrarelativistic equivalent of the Fermi acceleration at a shock differs from its non-relativistic counterpart by the occurrence of large anisotropies in the distribution of the accelerated particles near the shock. In the rest frame of the upstream fluid, particles can only outrun the shock when their direction of motion lies within a small loss cone of opening angle     around the shock normal.
We also show that all physically plausible deflection or scattering mechanisms can change the upstream flight direction of relativistic particles originating from downstream by only a small amount:     . This limits the energy change per shock crossing cycle to     , except for the first cycle where particles originate upstream. In that case the upstream energy is boosted by a factor     for those particles that are scattered back across the shock into the upstream region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号