首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urban land-use change is the result of coupling interaction between planning and environment systems. The aim of our study was to construct an effective model to show how the urban land-use changes under the planning–environment interaction system with multi-hierarchy and major function oriented zoning. Combining the Cellular automata (CA) model with logistic regression model, the proposed multi-hierarchal vector CA model (MH-VCA3) was constructed by mining multi-hierarchal land-use transition rules under the planning–environment interaction system. Taking Jiangyin City (China) as an example, we compared the simulated result of the proposed model to those of the well-accepted Logistic CA and traditional multi-level CA models to demonstrate the effectiveness of the consideration of top-down decomposition constraint and bottom-up updating. Furthermore, by simulating the land-use changes under different population regionalization scenarios, we found that in order to form the spatial pattern of “agglomeration in the north and ecology in the south,” the planned population growth at the global hierarchal level should be allocated to the district units according to the law of Central district > Chengxi district > Chengdong district > Chengnan district > Chengdongnan district. The proposed model is expected to provide scientific support for the formulation of urban planning schemes in the future.  相似文献   

2.
Quantification and assessment of nationwide population access to health-care services is a critical undertaking for improving population health and optimizing the performance of national health systems. Rural–urban unbalance of population access to health-care services is widely involved in most of the nations. This unbalance is also potentially affected by varied weather and road conditions. This study investigates the rural and urban performances of public health system by quantifying the spatiotemporal variations of accessibility and assessing the impacts of potential factors. Australian health-care system is used as a case study for the rural–urban comparison of population accessibility. A nationwide travel time-based modified kernel density two-step floating catchment area (MKD2SFCA) model is utilized to compute accessibility of travel time within 30, 60, 120, and 240 min to all public hospitals, hospitals that provide emergency care, and hospitals that provide surgery service, respectively. Results show that accessibility is varied both temporally and spatially, and the rural–urban unbalance is distinct for different types of hospitals. In Australia, from the perspective of spatial distributions of health-care resources, spatial accessibility to all public hospitals in remote and very remote areas is not lower (and may even higher) than that in major cities, but the accessibility to hospitals that provide emergency and surgery services is much higher in major cities than other areas. From the angle of temporal variation of accessibility to public hospitals, reduction of traffic speed is 1.00–3.57% due to precipitation and heavy rain, but it leads to 18–23% and 31–50% of reduction of accessibility in hot-spot and cold-spot regions, respectively, and the impact is severe in New South Wales, Queensland, and Northern Territory during wet seasons. Spatiotemporal analysis for the variations of accessibility can provide quantitative and accurate evidence for geographically local and dynamic strategies of allocation decision-making of medical resources and optimizing health-care systems both locally and nationally.  相似文献   

3.
Pixel-based or texture-based classification technique individually does not yield an appropriate result in classifying the high spatial resolution remote sensing imagery since it comprises textured and non-textured regions. In this study, Hölder exponents (HE) and variance (VAR) are used together to transform the image for measuring texture. A threshold is derived to segment the transformed image into textured and non-textured regions. Subsequently, the original image is extracted into textured and non-textured regions using this segmented image mask. Afterward, extracted textured region is classified using ISODATA classification algorithm considering HE, VAR, and intensity values of individual pixel of textured region. And extracted non-textured region of the image is classified using ISODATA classification algorithm. In case of non-textured region, HE and VAR value of individual pixel is not considered for classification for significant textural variation is not found among different classes. Consequently, the classified outputs of non-textured and textured regions that are generated independently are merged together to get the final classified image. IKONOS 1 m PAN images are classified using the proposed algorithm, and the classification accuracy is more than 88%.  相似文献   

4.
The urban land cover mapping and automated extraction of building boundaries is a crucial step in generating three-dimensional city models. This study proposes an object-based point cloud labelling technique to semantically label light detection and ranging (LiDAR) data captured over an urban scene. Spectral data from multispectral images are also used to complement the geometrical information from LiDAR data. Initial object primitives are created using a modified colour-based region growing technique. Multiple classifier system is then applied on the features extracted from the segments for classification and also for reducing the subjectivity involved in the selection of classifier and improving the precision of the results. The proposed methodology produces two outputs: (i) urban land cover classes and (ii) buildings masks which are further reconstructed and vectorized into three-dimensional buildings footprints. Experiments carried out on three airborne LiDAR datasets show that the proposed technique successfully discriminates urban land covers and detect urban buildings.  相似文献   

5.
There have been rapid population and accelerating urban growth with associated changes in land use and soil degradation in northeast China, an important grain-producing region. The development of integrated use of remote sensing, geographic information systems, and combined cellular automata– Markov models has provided new means of assessing changes in land use and land cover, and has enabled projection of trajectories into the future. We applied such techniques to the prefecture-level city of Harbin, the tenth largest city in China. We found that there had been significant losses of the land uses termed “cropland”, “grassland”, “wetland”, and “floodplain” in favour of “built-up land” and lesser transformations from “floodplain” to “forestland” and “water body” over the 18-year period. However, the transition was not a simple process but a complex network of changes, interchanges, and multiple transitions. In the absence of effective land use policies, projection of past trajectories into a balance state in the future would result in the decline of cropland from 65.6% to 46.9% and the increase of built-up area from 7.7% to 23.0% relative to the total area of the prefecture in 1989. It also led to the virtual elimination of land use types such as unused wetland and floodplain.  相似文献   

6.
In this study we used the PhenoRice algorithm to track recent variations of rice cultivation practices along the Senegal River Valley. Time series of MODIS imagery with 250 m spatial resolution and a nominal 8-days frequency were used as input for the algorithm to map the spatial and temporal variations of rice cultivated area and of several important phenological metrics (e.g., crop establishment and harvesting dates, length of season) for the 2003–2016 period in both the dry and the wet rice cultivation seasons. Comparison between PhenoRice results and ancillary and field data available for the Senegal part of the study area showed that the algorithm is able to track the interannual variations of rice cultivated area, despite the total detected rice area being consistently underestimated. PhenoRice estimates of crop establishment and harvesting dates resulted accurate when compared with field observations available for two sub-regions for a period of 10 years, and thus allow assessing interannual variability and tracking changes in agronomic practices. An analysis of interannual trends of rice growing practices based on PhenoRice results highlighted a clear shift of rice cultivation from the wet to the dry season starting approximately from 2008. The shift was found to be particularly evident in the delta part of the SRV. Additionally, a statistically significant trend was revealed starting 2006 towards a longer dry season (r2 = 0.81; Slope = 1.24 days y−1) and a shorter wet season (r2 = 0.65; Slope = 0.53 days y−1). These findings are in agreement with expert knowledge of changes ongoing in the area. In particular the shorter wet season is attributed to shortage of labor and equipment leading to a delay in completion of harvesting operations in the dry season, which led to the adoption of short-duration rice varieties by farmers in the wet season to avoid risk of yield losses due to climatic constraints. Aforementioned results highlight the usefulness of the PhenoRice algorithm for providing insights about recent variations in rice cultivation practices over large areas in developing countries, where high-quality up to date information about changes in agricultural practices are often lacking.  相似文献   

7.
Cairo region is characterized by a range of physiographic features, including: flat agricultural lands, bare sandy deserts, highlands, calcareous terrains and urban land use. A time series data-set (300 images) acquired from the Moderate Resolution Imaging Spectroradiometer for the period July 2002–June 2015 were utilized to retrieve the spatial variations in the mean land surface temperature (LST) for the above-mentioned surface features. Results showed that vegetation, topography and surface albedo have negative correlations with LST. Vegetation/LST correlation has the maximum regression coefficient (R2 = 0.68) and albedo/LST has the minimum (R2 = 0.03). Cultivated lands reveal the lowest mean LST (<32 °C), whereas industrial lands exhibit the highest LST (>40 °C) of Cairo region. There is a considerable urban heat island formed at Helwan south of Cairo, where heavy industries are settled. Industrial activities raised the mean LST of the region by at least 4 °C than the surrounding urban lands.  相似文献   

8.
This paper presents the first application of spatially correlated neutral models to the detection of changes in mortality rates across space and time using the local Morans I statistic. Sequential Gaussian simulation is used to generate realizations of the spatial distribution of mortality rates under increasingly stringent conditions: 1) reproduction of the sample histogram, 2) reproduction of the pattern of spatial autocorrelation modeled from the data, 3) incorporation of regional background obtained by geostatistical smoothing of observed mortality rates, and 4) incorporation of smooth regional background observed at a prior time interval. The simulated neutral models are then processed using two new spatio-temporal variants of the Morans I statistic, which allow one to identify significant changes in mortality rates above and beyond past spatial patterns. Last, the results are displayed using an original classification of clusters/outliers tailored to the space-time nature of the data. Using this new methodology the space-time distribution of cervix cancer mortality rates recorded over all US State Economic Areas (SEA) is explored for 9 time periods of 5 years each. Incorporation of spatial autocorrelation leads to fewer significant SEA units than obtained under the traditional assumption of spatial independence, confirming earlier claims that Type I errors may increase when tests using the assumption of independence are applied to spatially correlated data. Integration of regional background into the neutral models yields substantially different spatial clusters and outliers, highlighting local patterns which were blurred when local Morans I was applied under the null hypothesis of constant risk.This research was funded by grants R01 CA92669 and 1R43CA105819-01 from the National Cancer Institute and R43CA92807 under the Innovation in Biomedical Information Science and Technology Initiative at the National Institute of Health. The views stated in this publication are those of the authors and do not necessarily represent the official views of the NCI. The authors also thank three anonymous reviewers for their comments that helped improve the presentation of the methodology.  相似文献   

9.
This study aims to analyse the processes and patterns of peri-urbanization using diurnal earth observation data-sets from onboard DMSP–Operational Linescan System. In this study, multiple correlation, simple and conditional linear regression are used to find out the degree of relationship and spatial behavioural pattern of the factors responsible for the urbanization. All the factors are standardized using the Analytical Hierarchy Process (AHP) coupled fuzzy membership functions. AHP is used to derive the weighting of the factors to produce the urbanity index. In total three functional zones – urban, rural and urban shadow are generated based on factor standardization and spatial contiguity index. Urban fringe is sharing ≥ 60% of Urbanity Index followed by rural fringe (39.50–60% of urbanity index) and urban shadow <39.50% of urbanity index. Shape index indicates that the city is going through unplanned development following cross to star shape growth.  相似文献   

10.
The recent and forthcoming availability of high spatial resolution imagery from satellite and airborne sensors offers the possibility to generate an increasing number of remote sensing products and opens new promising opportunities for multi-sensor classification. Data fusion strategies, applied to modern airborne Earth observation systems, including hyperspectral MIVIS, color-infrared ADS40, and LiDAR sensors, are explored in this paper for fine-scale mapping of heterogeneous urban/rural landscapes. An over 1000-element array of supervised classification results is generated by varying the underlying classification algorithm (Maximum Likelihood/Spectral Angle Mapper/Spectral Information Divergence), the remote sensing data stack (different multi-sensor data combination), and the set of hyperspectral channels used for classification (feature selection). The analysis focuses on the identification of the best performing data fusion configuration and investigates sensor-derived marginal improvements. Numerical experiments, performed on a 20-km stretch of the Marecchia River (Italy), allow for a quantification of the synergies of multi-sensor airborne data. The use of Maximum Likelihood and of the feature space including ADS40, LiDAR derived normalized digital surface, texture layers, and 24 MIVIS bands represents the scheme that maximizes the classification accuracy on the test set. The best classification provides high accuracy (92.57% overall accuracy) and demonstrates the potential of the proposed approach to define the optimized data fusion and to capture the high spatial variability of natural and human-dominated environments. Significant inter-class differences in the identification schemes are also found by indicating possible sub-optimal solutions for landscape-driven mapping, such as mixed forest, floodplain, urban, and agricultural zones.  相似文献   

11.
Understanding climate change and revealing its future paths on a local level is a great challenge for the future. Beside the expanding sets of available climatic data, satellite images provide a valuable source of information. In our study we aimed to reveal whether satellite data are an appropriate way to identify global trends, given their shorter available time range. We used the CARPATCLIM (CC) database (1961–2010) and the MODIS NDVI images (2000–2016) and evaluated the time period covered by both (2000–2010). We performed a regression analysis between the NDVI and CC variables, and a time series analysis for the 1961–2008 and 2000–2008 periods at all data points. The results justified the belief that maximum temperature (TMAX), potential evapotranspiration and aridity all have a strong correlation with the NDVI; furthermore, the short period trend of TMAX can be described with a functional connection with its long period trend. Consequently, TMAX is an appropriate tool as an explanatory variable for NDVI spatial and temporal variance. Spatial pattern analysis revealed that with regression coefficients, macro-regions reflected topography (plains, hills and mountains), while in the case of time series regression slopes, it justified a decreasing trend from western areas (Transdanubia) to eastern ones (The Great Hungarian Plain). This is an important consideration for future agricultural and land use planning; i.e. that western areas have to allow for greater effects of climate change.  相似文献   

12.
Crop acreage and its spatial distribution are a base for agriculture related works. Current research combining medium and low spatial resolution images focuses on data fusion and unmixing methods. The purpose of the former is to generate synthetic fine spatial resolution data instead of directly solving the problem. In the latter, high-resolution data is only used to provide endmembers and the result is usually an abundance map rather than the true spatial distribution data. To solve this problem, this paper designs a conceptual model which divides the study area into different types of pixels at a MODIS 250 m scale. Only three types of pixels contain winter wheat, i.e., pure winter wheat pixels (PA), the mixed pixels comprising winter wheat and other vegetation (MA) and the mixed pixels comprising winter wheat and other crops (MB). Different strategies are used in processing them. (1) Within the pure cultivated land pixels, the Kullback–Leibler (KL) divergence is employed to analyze the similarity between unknown pixels and the pure winter wheat samples on the temporal change characteristics of NDVI. Further PA is identified. (2) For MA, a proposed reverse unmixing method is firstly used to extract the temporal change information of cultivated land components, after which winter wheat is identified from the cultivated land components as previously described. (3) For MB which only appears on the border of PA, a mask is created by expanding the PA and temporal difference is utilized to identify winter wheat under the mask. Finally, these three results are integrated at a TM scale with the aid of 25 m resolution land use data. We applied the proposed solution and obtained a good result in the main agricultural area of the Yiluo River Basin. The identified winter wheat planting acreage is 161,050.00 hm2. The result is validated based on the five-hundred random validation points. Overall accuracy is 94.80% and Kappa coefficient is 0.85. This demonstrates that the temporal information reflecting crop growth is also an important indicator, and the KL divergence makes it more convenient in identifying winter wheat. This research provided a new perspective for the combination of low and medium spatial resolution remote sensing images. The proposed solution can also be effectively applied in other places and countries for the crop which has a clear temporal change characteristic that is different from others.  相似文献   

13.
Current variance models for GPS carrier phases that take correlation due to tropospheric turbulence into account are mathematically difficult to handle due to numerical integrations. In this paper, a new model for temporal correlations of GPS phase measurements based on turbulence theory is proposed that overcomes this issue. Moreover, we show that the obtained model belongs to the Mátern covariance family with a smoothness of 5/6 as well as a correlation time between 125–175 s. For this purpose, the concept of separation distance between two lines-of-sight introduced by Schön and Brunner (J Geod 1:47–57, 2008a) is extended. The approximations made are highlighted as well as the turbulence parameters that should be taken into account in our modeling. Subsequently, fully populated covariance matrices are easily computed and integrated in the weighted least-squares model. Batch solutions of coordinates are derived to show the impact of fully populated covariance matrices on the least-squares adjustments as well as to study the influence of the smoothness and correlation time. Results for a specially designed network with weak multipath are presented by means of the coordinate scatter and the a posteriori coordinate precision. It is shown that the known overestimation of the coordinate precision is significantly reduced and the coordinate scatter slightly improved in the sub-millimeter level compared to solutions obtained with diagonal, elevation-dependent covariance matrices. Even if the variations are small, turbulence-based values for the smoothness and correlation time yield best results for the coordinate scatter.  相似文献   

14.
The mixed pixel problem affects the extraction of land cover information from remotely sensed images. Super-resolution mapping (SRM) can produce land cover maps with a finer spatial resolution than the remotely sensed images, and reduce the mixed pixel problem to some extent. Traditional SRMs solely adopt a single coarse-resolution image as input. Uncertainty always exists in resultant fine-resolution land cover maps, due to the lack of information about detailed land cover spatial patterns. The development of remote sensing technology has enabled the storage of a great amount of fine spatial resolution remotely sensed images. These data can provide fine-resolution land cover spatial information and are promising in reducing the SRM uncertainty. This paper presents a spatial–temporal Hopfield neural network (STHNN) based SRM, by employing both a current coarse-resolution image and a previous fine-resolution land cover map as input. STHNN considers the spatial information, as well as the temporal information of sub-pixel pairs by distinguishing the unchanged, decreased and increased land cover fractions in each coarse-resolution pixel, and uses different rules in labeling these sub-pixels. The proposed STHNN method was tested using synthetic images with different class fraction errors and real Landsat images, by comparing with pixel-based classification method and several popular SRM methods including pixel-swapping algorithm, Hopfield neural network based method and sub-pixel land cover change mapping method. Results show that STHNN outperforms pixel-based classification method, pixel-swapping algorithm and Hopfield neural network based model in most cases. The weight parameters of different STHNN spatial constraints, temporal constraints and fraction constraint have important functions in the STHNN performance. The heterogeneity degree of the previous map and the fraction images errors affect the STHNN accuracy, and can be served as guidances of selecting the optimal STHNN weight parameters.  相似文献   

15.
This paper presents a Spatial Decision Support System for local governments of developing countries. It allows municipality government, enterprises, scientific community and civil society to address decision problems using GIS. The framework is supported by four modules of information technologies: Environmental Decision Support Database, Data Manipulation, Decision Support, and Mapping. A case study is presented covering the implementation of this framework in one municipality of Cuba. An example of land suitability planning for coconut crops is used to evaluate the system performance and usability. Results show local municipalities are able to use this framework to solve local decision problems using state of the art decision making even with low infrastructure development.  相似文献   

16.
Study of hyper-spectral behaviour of snow is important to interpret, analyse and validate optical remote sensing observations. To map and understand response of snow-mixed pixels in RS data, field experiments were conducted for linear mixing of external materials (i.e. Vegetation, Soil) with snow, using spectral-radiometer (350–2500 nm). Further, systematic non-linear mixing of snow contaminants (soil, coal, ash) in terms of size and concentration of contaminants is analysed to imitate and understand spectral response of actual field scenarios. Sensitivity of band indices along with absorption peak characteristics provide clues to discriminate the type of contaminants. SWIR region is found to be useful for discriminating size of external contaminants in snow e.g. Avalanche deposited snow from light contaminated forms. Present research provide inputs for mapping snow-mixed pixels in medium/coarse resolution remote sensing RS data (in terms of linear mixing) and suitable wavelength selections for identification and discriminating type/size of snow contaminants (in terms of non-linear mixing).  相似文献   

17.
This paper aims to improve the accuracy and the efficiency of high resolution land cover mapping in urban area. To this end, an improved approach for classification of hyperspectral imagery is proposed and evaluated. This approach benefits from both inherent spectral and spatial information of an image. The weighted genetic (WG) algorithm is first used to obtain the subspace of hyperspectral data. The obtained features are then fed into the enhanced marker-based minimum spanning forest (EMSF) classification algorithm. In this algorithm, the markers are extracted from the classification maps obtained by both support vector machine and watershed segmentation algorithm classifiers. For this purpose, the class’s pixels with the largest population in the classification map are kept for each region of the segmentation map. Then, the most reliable classified pixels are chosen from among the exiting pixels as markers. To evaluate the efficiency of the proposed approach, three hyperspectral data sets acquired by ROSIS-03, Hymap and Hyper-Cam LWIR are used. Experimental results showed that the proposed WG–EMSF approach achieves approximately 9, 8 and 6% better overall accuracy than the original MSF-based algorithm for these data sets respectively.  相似文献   

18.
GIScience scholars have identified map tours as an important visualization type for communicating spatial information: map tours are animations where the virtual camera moves through space and are common on the web, mobile devices, and television. Understanding how to enhance their effectiveness is timely because of recent, growing interest in virtual reality and animated map presentation tools such as Esri Story Maps? and Google Earth? tours. Despite this popularity, little empirical evidence exists about how people learn from map tours and how they should best be designed to improve effectiveness. This research is aimed at answering that need. An empirical study is described, which was designed to understand how virtual camera speed, path, and dynamic tilting within a map tour influence subjects’ ability to develop survey knowledge. The results of the experiment show that paths encompassing overviews of the landscape improve the viewer’s ability to build up survey knowledge; that tilting appears to have a much weaker effect; and that combining fast speed and a difficult path within a map tour increases the viewer’s cognitive load.  相似文献   

19.
Airborne high–spatial resolution images were evaluated for mapping purposes in a complex Atlantic rainforest environment in southern Brazil. Two study sites, covered predominantly by secondary evergreen rainforest, were surveyed by airborne multispectral high-resolution imagery. These aerophotogrammetric images were acquired at four spectral bands (visible to near-infrared) with spatial resolution of 0.39 m. We evaluated different data input scenarios to suit the object-oriented classification approach. In addition to the four spectral bands, auxiliary products such as band ratios and digital elevation models were considered. Comparisons with traditional pixel-based classifiers were also performed. The results showed that the object-based classification approach yielded a better overall accuracy, ranging from 89% to 91%, than the pixel-based classifications, which ranged from 62% to 63%. The individual classification accuracy of forest-related classes, such as young successional forest stages, benefits the object-based approach. These classes have been reported in the literature as the most difficult to map in tropical environments. The results confirm the potential of object-based classification for mapping procedures and discrimination of successional forest stages and other related land use and land cover classes in complex Atlantic rainforest environments. The methodology is suggested for further SAAPI acquisitions in order to monitor such endangered environment as well as to support National Land and Environmental Management Protocols.  相似文献   

20.
ABSTRACT

Since Al Gore created the vision for Digital Earth in 1998, a wide range of research in this field has been published in journals. However, little attention has been paid to bibliometric analysis of the literature on Digital Earth. This study uses a bibliometric analysis methodology to study the publications related to Digital Earth in the Science Citation Index database and Social Science Citation Index database (via the Web of Science online services) during the period from 1998 to 2015. In this paper, we developed a novel keyword set for ‘Digital Earth’. Using this keyword set, 11,061 scientific articles from 23 subject categories were retrieved. Based on the searched articles, we analyzed the spatiotemporal characteristics of publication outputs, the subject categories and the major journals. Then, authors’ performance, affiliations, cooperation, and funding institutes were evaluated. Finally, keywords were examined. Through keyword clustering, research hotspots in the field of Digital Earth were detected. We assume that the results coincide well with the position of Digital Earth research in the context of big data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号