首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition and arrangement of spatial entities, i.e., land cover objects, play a key role in distinguishing land use types from very high resolution (VHR) remote sensing images, in particular in urban environments. This paper presents a new method to characterize the spatial arrangement for urban land use extraction using VHR images. We derive an adjacency unit matrix to represent the spatial arrangement of land cover objects obtained from a VHR image, and use a graph convolutional network to quantify the spatial arrangement by extracting hidden features from adjacency unit matrices. The distribution of the spatial arrangement variables, i.e., hidden features, and the spatial composition variables, i.e., widely used land use indicators, are then estimated. We use a Bayesian method to integrate the variables of spatial arrangement and composition for urban land use extraction. Experiments were conducted using three VHR images acquired in two urban areas: a Pleiades image in Wuhan in 2013, a Superview image in Wuhan in 2019, and a GeoEye image in Oklahoma City in 2012. Our results show that the proposed method provides an effective means to characterize the spatial arrangement of land cover objects, and produces urban land use extractions with overall accuracies (i.e., 86% and 93%) higher than existing methods (i.e., 83% and 88%) that use spatial arrangement information based on building types on the Pleiades and GeoEye datasets. Moreover, it is unnecessary to further categorize the dominant land cover type into finer types for the characterization of spatial arrangement. We conclude that the proposed method has a high potential for the characterization of urban structure using different VHR images, and for the extraction of urban land use in different urban areas.  相似文献   

2.
Multiresolution segmentation (MRS) algorithm has been widely used to handle very-high-resolution (VHR) remote sensing images in the past decades. Unfortunately, segmentation quality is limited by the dependency of parameter selection on users’ experience and diverse images. Contrarily, the segmentation by weighted aggregation (SWA) can partly overcome the above limitations and produce an optimal segmentation for maximizing the homogeneity within segments and the heterogeneity across segments. However, SWA is solely tested and justified with digital photos in computer vision field instead of VHR images. This study aims at evaluating SWA performance on VHR imagery. First, multiscale spectral, shape, and texture features are defined to measure homogeneity of image objects for segmentation. Second, SWA is implemented to handle QuickBird, unmanned aerial vehicle (UAV), and GF-1 VHR images and further compared with MRS in eCognition software to demonstrate the applicability of SWA to diverse images in building, vegetation and water, forest stands, farmland, and mountain areas. Third, the results are fully evaluated with quantitative measurements on segmented objects and classification-based accuracy assessment on geographic information system vector data. The results indicate that SWA can produce higher quality segmentations, need fewer parameters and manual interventions, create fewer segmentation levels, incorporate more features, and obtain larger classification accuracy than MRS.  相似文献   

3.
Object based image analysis (OBIA) is an approach increasingly used in classifying high spatial resolution remote sensing images. Object based image classifiers first segment an image into objects (or image segments), and then classify these objects based on their attributes and spatial relations. Numerous algorithms exist for the first step of the OBIA process, i.e. image segmentation. However, less research has been conducted on the object classification part of OBIA, in particular the spatial relations between objects that are commonly used to construct rules for classifying image objects and refining classification results. In this paper, we establish a context where objects are areal (not points or lines) and non-overlapping (we call this “single-valued” space), and propose a framework of binary spatial relations between segmented objects to aid in object classification. In this framework, scale-dependent “line-like objects” and “point-like objects” are identified from areal objects based on their shapes. Generally, disjoint and meet are the only two possible topological relations between two non-overlapping areal objects. However, a number of quasi- topological relations can be defined when the shapes of the objects involved are considered. Some of these relations are fuzzy and thus quantitatively defined. In addition, we define the concepts of line-like objects (e.g. roads) and point-like objects (e.g. wells), and develop the relations between two line-like objects or two point-like objects. For completeness, cardinal direction relations and distance relations are also introduced in the proposed context. Finally, we implement the framework to extract roads and moving vehicles from an aerial photo. The promising results suggest that our methods can be a valuable tool in defining rules for object based image analysis.  相似文献   

4.
关于线状地理特征空间关系的自然语言描述的形式化表达   总被引:1,自引:0,他引:1  
许珺 《遥感学报》2007,11(2):152-158
目前的地理信息系统都使用定量的方法存储和查询空间信息,不能反映人们的定性思维方式,因此它表达地理空间信息的能力受到限制。在关于空间关系的自然语言描述的调查的基础上,本文定义了一组能反映线状物体空间关系的度量指标,结合反映拓扑关系的定量指标,使用决策树的数据挖掘算法,对调查结果进行分析,形式化了描述空间关系的自然语言词汇,建立了模糊的自然语言表达和图形的几何特征之间的联系。自然语言形式化后得到的规则可用于空间关系的自然语言查询系统。  相似文献   

5.
高光谱影像的引导滤波多尺度特征提取   总被引:1,自引:0,他引:1  
为了解决高光谱遥感影像分类中单一尺度特征无法有效表达地物类间差异和区分地物边界的不足,提高影像分类精度和改善分类目视解译效果,提出了采用引导滤波提取多尺度的空间特征的方法。首先,利用主成分分析对高光谱影像进行降维,移除噪声并突出主要特征;然后,将第1主成分作为引导影像,将包含信息量最多的若干主成分分别作为输入影像,应用依次增加的滤波半径分别进行引导滤波处理提取多个尺度的特征,获得影像不同尺度的结构信息;最后,将多尺度特征输入分类器中进行影像监督分类。采用仿真数据和帕维亚大学(Pavia University)、帕维亚城区(Pavia Centre)等3幅高光谱实验数据,提取了基于引导滤波的多尺度特征、多尺度形态特征和多尺度纹理特征,输入到支持向量机、随机森林和K近邻分类器中,进行了实验。实验结果表明:采用支持向量机分类Pavia University数据,相对于采用多尺度形态特征的分类结果,引导滤波特征的总体精度提高了6.5%;Pavia Centre和Salinas两幅影像最高分类精度均由引导滤波特征实现,分别达到98.51%和98.39%。实验证实基于引导滤波提取的多尺度特征能有效地描述地物结构,进而获得更高的分类精度和改善目视解译效果。  相似文献   

6.
The rapid development of remote sensing technology has facilitated us the acquisition of remote sensing images with higher and higher spatial resolution, but how to automatically understand the image contents is still a big challenge. In this paper, we develop a practical and rotation-invariant framework for multi-class geospatial object detection and geographic image classification based on collection of part detectors (COPD). The COPD is composed of a set of representative and discriminative part detectors, where each part detector is a linear support vector machine (SVM) classifier used for the detection of objects or recurring spatial patterns within a certain range of orientation. Specifically, when performing multi-class geospatial object detection, we learn a set of seed-based part detectors where each part detector corresponds to a particular viewpoint of an object class, so the collection of them provides a solution for rotation-invariant detection of multi-class objects. When performing geographic image classification, we utilize a large number of pre-trained part detectors to discovery distinctive visual parts from images and use them as attributes to represent the images. Comprehensive evaluations on two remote sensing image databases and comparisons with some state-of-the-art approaches demonstrate the effectiveness and superiority of the developed framework.  相似文献   

7.
Geographic features change over time, this change being the result of some kind of event. Most database systems used in GIS are relational in nature, capturing change by exhaustively storing all versions of data, or updates replace previous versions. This stems from the inherent difficulty of modelling geographic objects and associated data in relational tables, and this is compounded when the necessary time dimension is introduced to represent how these objects evolve. This article describes an object‐oriented (OO) spatio‐temporal conceptual data model called the Feature Evolution Model (FEM), which can be used for the development of a spatio‐temporal database management system (STDBMS). Object versioning techniques developed in the fields of Computer Aided Design (CAD) and engineering design are utilized in the design. The model is defined using the Unified Modelling Language (UML), and exploits the expressiveness of OO technology by representing both geographic entities and events as objects. Further, the model overcomes the limitations inherent in relational approaches in representing aggregation of objects to form more complex, compound objects. A management object called the evolved feature maintains a temporally ordered list of references to features thus representing their evolution. The model is demonstrated by its application to road network data.  相似文献   

8.
Consistency among parts and aggregates: A computational model   总被引:2,自引:0,他引:2  
Heterogeneous geographic databases contain multiple views of the same geographic objects at different levels of spatial resolution. When users perceive geographic objects as one spatial unit, although they are physically separated into multiple parts, appropriate methods are needed to assess the consistency among the aggregate and the parts. The critical aspect is that the overall spatial relationships with respect to other geographic objects must be preserved throughout the aggregation process. We developed a systematic model for the constraints that must hold with respect to other spatial objects when two parts of an object are aggregated. We found three sets of configurations that require increasingly more information in order to make a precise statement about their consistency: (1) configurations that are satisfied by the topological relations between the two parts and the object of interest; (2) configurations that need further information about the topological relation between the object of concern and the connector in order to be resolved unambiguously; and (3) configurations that require additional information about the topological relation between the aggregate's boundary and the boundary or interior of the object of interest to be uniquely described. The formalism extends immediately to relations between two regions with disconnected parts as well as to relations between a region and an arbitrary number of separations.  相似文献   

9.
RADARSAT-2全极化SAR数据地表覆盖分类   总被引:1,自引:0,他引:1  
全极化合成孔径雷达(SAR)能够测量每一观测目标的全散射矩阵,但地物分布的复杂性往往造成不同地物具有相似的后向散射信号特征,因而增加了地物信息提取的难度。文中基于北京地区的RADARSAT-2全极化雷达数据,在图像处理的特征分解的基础上,利用PolSARPro软件提取包含地物散射机理信息的各种极化参数,按H-α、A-α、H-A对全极化SAR影像进行基于散射机理的分类,继而将分类结果作为Wishart H/A/α、Wishart H/α的初始类别划分。最后,采用决策树分类算法对基于Wishart分布的监督分类及以上两种分类算法进行融合处理,从而实现地物的分类,并将分类结果与经典的分类算法进行对比分析,验证了文中方法的有效性。  相似文献   

10.
This study examines best image fusion approaches for generating pansharpened very high resolution (VHR) multispectral images to be utilized for monitoring coastal barrier island development. Selected fusion techniques assessed in this research come from the three categories of spectral substitution (e.g., Brovey transform and multiplicative merging), arithmetic merging (e.g., modified intensity-hue-saturation and principal component analysis), and spatial domain (e.g., high-pass filter, and subtractive resolution merge). The image fusion methods selected for this study were capable of producing pansharpened VHR images with more than three bands. Comparisons of fusion techniques were applied to images from three satellite sensors: United States commercial satellites IKONOS and QuickBird, and the Korean KOMPSAT II. Pansharpened VHR multispectral images were assessed by spectral and spatial quality measurements. Results satisfying both spectral and spatial quality revealed optimum pansharpened techniques necessary for regular coastal mapping of barrier islands. These techniques may also be used to assess the quality of recently available VHR imagery acquired by numerous international, government, and commercial VHR satellite programs.  相似文献   

11.
In this paper we study an effective solution to deal with supervised change detection in very high geometrical resolution (VHR) images. High within-class variance as well as low between-class variance that characterize this kind of imagery make the detection and classification of ground cover transitions a difficult task. In order to achieve high detection accuracy, we propose the inclusion of spatial and contextual information issued from local textural statistics and mathematical morphology. To perform change detection, two architectures, initially developed for medium resolution images, are adapted for VHR: Direct Multi-date Classification and Difference Image Analysis. To cope with the high intra-class variability, we adopted a nonlinear classifier: the Support Vector Machines (SVM). The proposed approaches are successfully evaluated on two series of pansharpened QuickBird images.  相似文献   

12.
宋桔尔  王雪  李培军 《遥感学报》2012,16(6):1233-1245
将两种基于地统计学的纹理特征加入到高分辨率遥感影像的城市建筑物倒塌探测中,考察了多尺度纹理对探测结果的影响.采用基于单类支持向量机的多时相直接分类方法提取建筑物倒塌信息.以伊朗巴姆地区2003 年12 月地震前后的Quickbird 遥感影像为数据源,评价和验证了本文方法的有效性.研究表明,将多尺度的空间和时相纹理信息加入到高分辨率遥感影像的倒塌建筑物探测中,可以有效提高分类精度,该方法得到的结果可应用于灾害救援及评估.  相似文献   

13.
The automated detection and mapping of landslides from Very High Resolution (VHR) images present several challenges related to the heterogeneity of landslide sizes, shapes and soil surface characteristics. However, a common geomorphological characteristic of landslides is to be organized with a series of embedded and scaled features. These properties motivated the use of a multiresolution image analysis approach for their detection. In this work, we propose a hybrid segmentation/classification region-based method, devoted to this specific issue. The method, which uses images of the same area at various spatial resolutions (Medium to Very High Resolution), relies on a recently introduced top-down hierarchical framework. In the specific context of landslide analysis, two main novelties are introduced to enrich this framework. The first novelty consists of using non-spectral information, obtained from Digital Terrain Model (DTM), as a priori knowledge for the guidance of the segmentation/classification process. The second novelty consists of using a new domain adaptation strategy, that allows to reduce the expert’s interaction when handling large image datasets. Experiments performed on satellite images acquired over terrains affected by landslides demonstrate the efficiency of the proposed method with different hierarchical levels of detail addressing various operational needs.  相似文献   

14.
Automatic monitoring of changes on the Earth’s surface is an intrinsic capability and simultaneously a persistent methodological challenge in remote sensing, especially regarding imagery with very-high spatial resolution (VHR) and complex urban environments. In order to enable a high level of automatization, the change detection problem is solved in an unsupervised way to alleviate efforts associated with collection of properly encoded prior knowledge. In this context, this paper systematically investigates the nature and effects of class distribution and class imbalance in an unsupervised binary change detection application based on VHR imagery over urban areas. For this purpose, a diagnostic framework for sensitivity analysis of a large range of possible degrees of class imbalance is presented, which is of particular importance with respect to unsupervised approaches where the content of images and thus the occurrence and the distribution of classes are generally unknown a priori. Furthermore, this framework can serve as a general technique to evaluate model transferability in any two-class classification problem. The applied change detection approach is based on object-based difference features calculated from VHR imagery and subsequent unsupervised two-class clustering using k‐means, genetic k-means and self-organizing map (SOM) clustering. The results from two test sites with different structural characteristics of the built environment demonstrated that classification performance is generally worse in imbalanced class distribution settings while best results were reached in balanced or close to balanced situations. Regarding suitable accuracy measures for evaluating model performance in imbalanced settings, this study revealed that the Kappa statistics show significant response to class distribution while the true skill statistic was widely insensitive to imbalanced classes. In general, the genetic k-means clustering algorithm achieved the most robust results with respect to class imbalance while the SOM clustering exhibited a distinct optimization towards a balanced distribution of classes.  相似文献   

15.
常规高光谱影像逐像素分类往往没有考虑空间相关性,分类结果未体现地物的空间关联和分布特征。为了在分类中充分利用空间特征,利用聚类信息并结合隐马尔可夫随机场模型讨论了高光谱遥感影像光谱-空间分类方法。首先,在不同特征提取方法(最小噪声分离、独立成分分析和主成分分析)下,使用不同聚类方法(k-均值、迭代自组织分析算法和模糊c-均值算法)借助隐马尔可夫随机场获取优化的分割图;然后,采用4连通区域标记法对分割区域标记生成图像对象,并根据支持向量机的逐像素分类结果采用多数投票法对图像对象进行分类;最后,借助凹槽窗口邻域滤波技术改进分类结果,削弱“椒盐”现象。该方法综合了监督分类和非监督分类的优势,通过聚类引入地物空间相关性信息,通过隐马尔可夫随机场引入上下文特征,较好地弥补了单纯基于光谱信息分类的不足。  相似文献   

16.
Texture or spatial arrangement of neighborhood objects and features plays an important role in the human visual system for pattern recognition and image classification. The traditional spectral–based image processing techniques have proven inadequate for urban land use and land cover mapping from images acquired by the current generation of fine–resolution satellites. This is because of the high frequency spatial arrangements or complex nature of urban features. There is a need for an effective algorithm to digitally classify urban land use and land cover categories using high–resolution image data. Recent studies using wavelet transforms for texture analysis have generally reported better accuracy. Based on a high–resolution ATLAS image, this study illustrates four different wavelet decomposition procedures – the standard, horizontal, vertical, and diagonal decompositions – for urban land use and land cover feature extraction with the use of 33×33 pixel samples. The standard decomposition approach was found to be the most efficient approach in urban texture analysis and classification. For comparison purposes and to better evaluate the accuracy of wavelet approaches in image classification, spatial autocorrelation techniques (Moran's I and Geary's C ) and the spatial co–occurrence matrix method were also examined. The results suggest that the wavelet transform approach is superior to all other approaches.  相似文献   

17.
张猛  曾永年  朱永森 《遥感学报》2017,21(3):479-492
以洞庭湖流域为研究区,对大范围湿地信息遥感提取方法进行了研究。先基于时间序列MODIS EVI及物候特征参数,通过J-M(Jeffries-Matusita distance)距离分析,构建了MODIS(250 m)最佳时序组合分类数据;其次,通过Johnson指数确定了最佳分割尺度,采用面向对象的遥感分类方法(Random tree分类器)提取了洞庭湖流域的湿地信息,并验证该方法的适用性。研究结果表明,基于时序数据与面向对象的Random tree分类的总体精度和Kappa系数分别为78.84%和0.71,较之基于像元的相同算法的总体分类精度和Kappa系数分别提高了5.79%和0.04。同时,基于面向对象方法的湿地整体的用户精度与生产者精度较基于像元方法分别提高了4.56%和6.21%,可有效提高大区域湿地信息提取的精度。  相似文献   

18.
由于地理国情林地数据不包含实地面积小于400 m2的树木或四旁单排林,若仅利用地理国情的林地数据统计区域森林覆盖率,将对四旁树面积较大地区的林地统计结果产生较大误差。为提取区域内准确的林地覆盖与空间分布状况,本文借助地理国情地表覆盖数据,提出了一种基于北京二号高分辨率遥感影像的林地提取方法。首先,根据遥感影像光谱特征,将研究区按植被、道路、铁路、建筑用地进行地类划分,并基于遥感影像进行各地类的样本提取,通过可分离检验的样本利用最大似然分类提取研究区内植被覆盖范围;然后,借助地理国情地表覆盖数据,使用叠置分析剔除误分、错分地类,得到区域林地的空间分布。试验结果表明:(1)研究区内林地覆盖率为20.3%,尚未满足北京新一轮林地规划需求;(2)地理国情地表覆盖数据内林地面积占提取林地总面积的54.03%,说明在部分地区使用本文方法对地理国情林地数据进行补充是有必要的。通过将试验结果与遥感影像进行目视比对并结合外业调查结果发现,提取的林地空间分布情况与实际分布基本相符。本文为地理国情的应用提供了一种新方法,研究结果可辅助区域的绿色发展规划,有助于构建科学的生态空间格局。  相似文献   

19.
位置服务是地理信息系统(GIS)应用的重要领域,GIS提供关于空间位置的坐标描述,但这不符合人们的认知和日常习惯。地理空间中人们日常的交流通常使用方位描述。基于自然语言的空间方位的描述对移动目标(如驾驶员)是十分重要的,通过规范的地点描述语言进行快速的地理定位,可提高人的空间反应和处理能力。本文依据人的多尺度空间认知,分析空间参考和定位习惯,结合自然语言描述知识,利用GIS分析功能,给出多尺度环境下空间方位的自然语言描述。  相似文献   

20.
利用多尺度Hough变换提取高分辨率SAR图像建筑物L型结构   总被引:2,自引:0,他引:2  
提出了一种利用多尺度Hough变换从高分辨率SAR图像提取建筑物L型结构的方法。针对高分辨率SAR图像建筑物L型结构的特点,建立了建筑物L型结构简化几何模型,并采用从粗到精的思路利用多尺度Hough变换提取建筑物L型结构方向线。并提出了一种L型结构组合度函数对提取直线进行编组,确定建筑物L型结构的方向和拐点。最后,采用基于扫描线的方法计算L型结构线宽,得到完整规则的建筑物L型结构。多幅真实机载高分辨率SAR图像实验结果表明,本方法可以有效地提取高分辨率SAR图像建筑物L型结构,提取结果与实际位置吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号