首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Land use change has a significant effect on water balance, especially in arid region, such as Northwest China. In this paper, we analyze the effect of land use change on water balance in terms of the amount of water supply and demand from economic perspective. It's the first time to extend the basic 48 sectors input-output table to include water and land accounts that involved into multiple production processes for Zhangye city. We then perform the improved ORANI-G model, a single region Computable General Equilibrium (CGE) model, to analyze the effect of land use change on water balance under three scenarios. Subsequently, scenario-based simulation results are interpreted through selected sectors from agricultural, industrial, and service sectors respectively. Finally, the effect of land use change on water balance is analyzed through the difference between business-as-usual and land use unchanged scenarios. The results show that the extent of effect on water balance is different among sectors. Specifically, from the perspective of absolute value, service sectors are the largest, followed by industrial sectors, and the agricultural sectors are the least. Conversely, in terms of percentage change of land use, the largest extent of effect occurs in agricultural sectors. Additionally, with the rapid urbanization and the development of social economy, water balance in industrial sectors and service sectors will be stricken and reconstructed to a new high level. Simulation results also show that agricultural land shrinking will mitigate water scarcity distinctly, which indicates that balance the relationship among different stakeholders is imperative to guarantee water transformation from agricultural sectors to industrial and service sectors.  相似文献   

2.
荣洁  曾春芬  王腊春 《湖泊科学》2014,26(2):305-312
基于1971年枯水年、1989年丰水年、2000年平水年3类典型代表年的逐日降雨量、逐日蒸发量以及不同时期地表覆盖遥感分类数据,以城市化快速发展地表覆盖变化明显的太湖流域为研究区域,利用太湖流域河网水量模型进行了土地利用/覆被变化的水文响应研究,分析了太湖流域1990 2000年与2000 2006年间的土地利用/覆被变化及其对水位过程的影响.不仅有利于对城市化地区水文特征变化规律深入了解,也为典型城市化地区防洪减灾提供科学可靠的依据.研究表明,太湖流域城镇化进程的加快引起了土地利用/覆被变化的主要表现是水田、水域等面积向城镇面积转化,城镇化进程加快,2000 2006年期间的城镇化速度大于1990 2000年间;下垫面的变化对太湖流域水文过程产生了明显的影响,随着城市化进程地表覆盖的变化,水位有整体升高的趋势,并且增幅加大,与城镇化速率变化趋势相一致,城镇化程度高的地方水位上升更为明显;降雨量也是水位过程的影响因素之一.  相似文献   

3.
The annual hydrological regime of the Nakambe River shows substantial changes during the period 1955–1998 with a shift occurring around 1970. From 1970 to the mid-1990s, despite a reduction in rainfall and an increase in the number of dams in the basin, average runoff and maximum daily discharges increased. This paper reviews the hydrological behaviour of the Nakambe River from 1955 to 1998 and examines the potential role of land use change on soil water holding capacity (WHC) in producing the counter-intuitive change in runoff observed after 1970. We compare the results of two monthly hydrological models using different rainfall, potential evapotranspiration and WHC data sets. Model simulations with soil WHC values modified over time based upon historical maps of land use, are compared against simulations with a constant value for WHC. The extent of natural vegetation declined from 43 to 13% of the total basin area between 1965 and 1995, whilst the cultivated areas increased from 53 to 76% and the area of bare soil nearly tripled from 4 to 11%. The total reduction in WHC is estimated to range from 33 to 62% depending on the method used, either considering that the WHC values given by the FAO stand for the environmental situation in 1965 or before. There is a marked improvement in river flow simulation using the time-varying values of soil WHC. The paper ends with a discussion of the role of other factors such as surface runoff processes and groundwater trends in explaining the hydrological behaviour of the Nakambe River.  相似文献   

4.
Remote-sensing images of Ebinur Lake Basin including six years (1960, 1972, 1990, 2000, 2005 and 2010) were interpreted through RS and GIS. Land use changes in Ebinur Lake Basin during the past five decades were analyzed according to interpretation results. On this basis, effect of land use changes on hydrology and water resources was analyzed. Results show that the land use pattern in Ebinur Lake Basin changed greatly from 1960 to 2010. Cultivated Land and Urban-Rural Construction Land increased, while other landuse types decreased. Most areas were Unused Land. Generally, oasis expanded continuously, but oasis in Ganjiahu Zone at downstream of the Kuitun River Basin reduced to some extent. Runoff of the Kuitun River and Jinghe River increased gradually, but runoff of the Bortala River reduced continuously. Both inflows and lake area declined year by year. The groundwater level dropped significantly and water deteriorated continuously. Due to the decelerating wind blowing, evaporation in the basin reduced accordingly. Hydrology and water resources changes in Ebinur Lake Basin in past five decades were mainly caused by continuous expansion of Cultivated Land and oasis, continuous population growth and hydraulic engineering constructions. However, oasis expansion shall be limited within the carrying capacity of water resources. To maintain ecological security in the basin, it is necessary to determine reasonable oasis area, optimize river system structure, and improve utilization efficiency of water resources.  相似文献   

5.
In the first part of this paper, the impact of forestry, agriculture and urban activities on the quality of surface water is analysed. Daily data from 15 forest and agricultural experimental catchments of the Institute of Hydrology, Slovak Academy of Sciences are used. It is shown, that the nitrate concentrations in surface water have decreased in Slovakia since 1989 as a result of decreased use of inorganic nitrogen fertilisers (lower intensity of agricultural production in Slovakia owing to recent economic changes). The annual nitrate specific load varies from 5.90 to 110 kg ha−1 year−1, the annual sulphate load varied from 29.16 to 509.60 kg ha−1 year−1 and the annual phosphate load varied from 0.0098 to 0.0224 kg ha−1 year−1 during 1990–1992.

In the second part, a two-step method of three-component hydrograph separation of rain-, soil- and groundwater is proposed. The method is used in the Manelo-Gribov microbasin (O.95 km2) in Eastern Slovakia. The annual contribution of surface runoff in total runoff volume was 57.5%, the contribution of interflow runoff was 21.1%, and the contribution of groundwater was 21.4%, during the period from 1 August to 31 July 1992. A deterministic regression model for predicting daily nitrate concentrations from values of stream daily discharge and flow component data was developed. A set of 1421 modelled NO3−1 data was compared with the set of measured data.  相似文献   


6.
分析了淀山湖水量的主要补给来源及淀山湖水量受潮沙影响的泄流规律,并用1988年的实测资料研究枯水年型的淀山湖水量平衡。计算结果表明:淀山湖区在1988年降水稀少,但它可获取邻近河湖及长江等水体的水源补给,使湖水量达到年内基本平衡。  相似文献   

7.
This paper proposed to provide valuable information for integrated water resources management through evaluating the research on the interaction mechanism among land use changes, regional hydrological ecosystem services and human well-being. Firstly, the driving mechanism of land use and land cover changes was introduced in this paper. Secondly, the overview of the interaction mechanism among land use and land cover changes, regional hydrological ecosystem services and human well-being was given. Based on the meta-analysis, land use changes have a profound influence on regional hydrological ecosystem services, and the variation of hydrological ecosystem could benefit or impair human well-being. Finally, two suggestions were emphasized for managers or policy makers for the future integrated water resources management: (1) Proper land use makes for the water resource management; (2) Blindly pursuing the provisioning services weakens other services of hydrological ecosystem.  相似文献   

8.
This paper reports on a project to compare predictions from a range of catchment models applied to a mesoscale river basin in central Germany and to assess various ensemble predictions of catchment streamflow. The models encompass a large range in inherent complexity and input requirements. In approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT, PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input data. The two predictions from each model are then combined by simple averaging to produce a single-model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce multi-model ensemble predictions. Both the single-model ensembles and the multi-model ensembles are shown to give predictions that are generally superior to those of their respective constituent models, both during a 7-year calibration period and a 9-year validation period. This occurs despite a considerable disparity in performance of the individual models. Even the weakest of models is shown to contribute useful information to the ensembles they are part of. The best model combination methods are a trimmed mean (constructed using the central four or six predictions each day) and a weighted mean ensemble (with weights calculated from calibration performance) that places relatively large weights on the better performing models. Conditional ensembles, in which separate model weights are used in different system states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted mean ensemble. However a conditional ensemble that discriminates between rising and receding flows shows moderate improvement. An analysis of ensemble predictions shows that the best ensembles are not necessarily those containing the best individual models. Conversely, it appears that some models that predict well individually do not necessarily combine well with other models in multi-model ensembles. The reasons behind these observations may relate to the effects of the weighting schemes, non-stationarity of the climate series and possible cross-correlations between models.  相似文献   

9.
Abstract

Estimating water resources is important for adequate water management in the future, but suitable data are often scarce. We estimated water resources in the Vilcanota basin (Peru) for the 1998–2009 period with the semi-distributed hydrological model PREVAH using: (a) raingauge measurements; (b) satellite rainfall estimates from the TRMM Multi-satellite Precipitation Analysis (TMPA); and (c) ERA-Interim re-analysis data. Multiplicative shift and quantile mapping were applied to post-process the TMPA estimates and ERA-Interim data. This resulted in improved low-flow simulations. High-flow simulations could only be improved with quantile mapping. Furthermore, we adopted temperature and rainfall anomalies obtained from three GCMs for three future periods to make estimations of climate change impacts (Delta-change approach) on water resources. Our results show more total runoff during the rainy season from January to March, and temporary storages indicate that less water will be available in this Andean region, which has an effect on water supply, especially during dry season.

Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

10.
The assessment of surface water resources (SWRs) in the semi‐arid Yongding River Basin is vital as the basin has been in a continuous state of serious water shortage over the last 20 years. In this study, the first version of the geomorphology‐based hydrological model (GBHM) has been applied to the basin over a long period of time (1956–2000) as part of an SWR assessment. This was done by simulating the natural hydrological processes in the basin. The model was first evaluated at 18 stream gauges during the period from 1990 to 1992 to evaluate both the daily streamflows and the annual SWRs using the land use data for 1990. The model was further validated in 2000 with the annual SWRs at seven major stream gauges. Second, the verified model was used in a 45‐year simulation to estimate the annual SWRs for the basin from 1956 to 2000 using the 1990 land use data. An empirical correlation between the annual precipitation and the annual SWRs was developed for the basin. Spatial distribution of the long‐term mean runoff coefficients for all 177 sub‐basins was also achieved. Third, an additional 10‐year (1991–2000) simulation was performed with the 2000 land use data to investigate the impact of land use changes from 1990 to 2000 on the long‐term annual SWRs. The results suggest that the 10‐year land use changes have led to a decrease of 8·3 × 107 m3 (7·9% of total) for the 10‐year mean annual SWRs in the simulation. To our knowledge, this work is the first attempt to assess the long‐term SWRs and the impact of land use change in the semi‐arid Yongding River Basin using a semi‐distributed hillslope hydrological model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A. Montenegro  R. Ragab 《水文研究》2010,24(19):2705-2723
Brazilian semi‐arid regions are characterized by water scarcity, vulnerability to desertification, and climate variability. The investigation of hydrological processes in this region is of major interest not only for water planning strategies but also to address the possible impact of future climate and land‐use changes on water resources. A hydrological distributed catchment‐scale model (DiCaSM) has been applied to simulate hydrological processes in a small representative catchment of the Brazilian northeast semi‐arid region, and also to investigate the impact of climate and land‐use changes, as well as changes associated with biofuel/energy crops production. The catchment is part of the Brazilian network for semi‐arid hydrology, established by the Brazilian Federal Government. Estimating and modelling streamflow (STF) and recharge in semi‐arid areas is a challenging task, mainly because of limitation in in situ measurements, and also due to the local nature of some processes. Direct recharge measurements are very difficult in semi‐arid catchments and contain a high level of uncertainty. The latter is usually addressed by short‐ and long‐time‐scale calibration and validation at catchment scale, as well as by examining the model sensitivity to the physical parameters responsible for the recharge. The DiCaSM model was run from 2000 to 2008, and streamflow was successfully simulated, with a Nash–Sutcliffe (NS) efficiency coefficient of 0·73, and R2 of 0·79. On the basis of a range of climate change scenarios for the region, the DiCaSM model forecasted a reduction by 35%, 68%, and 77%, in groundwater recharge (GWR), and by 34%, 65%, and 72%, in streamflow, for the time spans 2010–2039, 2040–2069, and 2070–2099, respectively, could take place for a dry future climate scenario. These reductions would produce severe impact on water availability in the region. Introducing castor beans to the catchment would increase the GWR and streamflow, mainly if the caatinga areas would be converted into castor beans production. Changing an area of 1000 ha from caatinga to castor beans would increase the GWR by 46% and streamflow by 3%. If the same area of pasture is converted into castor beans, there would be an increase in GWR and streamflow by 24% and 5%, respectively. Such results are expected to contribute towards environmental policies for north‐east Brazil (NEB), and to biofuel production perspectives in the region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
ABSTRACT

Climate change may have significant consequences for water resources availability and management at the basin scale. This is particularly true for areas already suffering from water stress, such as the Mediterranean area. This work focused on studying these impacts in the Llobregat basin supplying the Barcelona region. Several climate projections, adapted to the spatiotemporal resolution of the study, were combined with a daily hydrological model to estimate future water availability. Depending on the scenario and the time period, different assessment indicators such as reliability and resilience showed a future decrease in water resources (up to 40%), with drought periods becoming more frequent. An additional uncertainty analysis showed the high variability of the results (annual water availability ranging from 147 hm3/year to 274 hm3/year), thus making accurate projections difficult. Finally, the study illustrates how climate change could be taken into account to provide adaptive measures for the future.
Editor M.C. Acreman; Associate editor J. Thompson  相似文献   

13.
V. P. Singh 《水文研究》2001,15(4):671-706
The history of the kinematic wave theory and its applications in water resources are traced. It is shown that the theory has found its niche in water resources and its applications are so widespread that they may well constitute what may be termed ‘kinematic wave hydrology’. Few theories have been applied in hydrology and water resources as extensively as the kinematic wave theory. This theory, however, is not without limitations and when it is applied they must be so recognized. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Extensive land use changes have occurred in many areas of SE Spain as a result of reforestation and the abandonment of agricultural activities. Parallel to this the Spanish Administration spends large funds on hydrological control works to reduce erosion and sediment transport. However, it remains untested how these large land use changes affect the erosion processes at the catchment scale and if the hydrological control works efficiently reduce sediment export. A combination of field work, mapping and modelling was used to test the influence of land use scenarios with and without sediment control structures (check‐dams) on sediment yield at the catchment scale. The study catchment is located in SE Spain and suffered important land use changes, increasing the forest cover 3‐fold and decreasing the agricultural land 2·5‐fold from 1956 to 1997. In addition 58 check‐dams were constructed in the catchment in the 1970s accompanying reforestation works. The erosion model WATEM‐SEDEM was applied using six land use scenarios: land use in 1956, 1981 and 1997, each with and without check‐dams. Calibration of the model provided a model efficiency of 0·84 for absolute sediment yield. Model application showed that in a scenario without check dams, the land use changes between 1956 and 1997 caused a progressive decrease in sediment yield of 54%. In a scenario without land use changes but with check‐dams, about 77% of the sediment yield was retained behind the dams. Check‐dams can be efficient sediment control measures, but with a short‐lived effect. They have important side‐effects, such as inducing channel erosion downstream. While also having side‐effects, land use changes can have important long‐term effects on sediment yield. The application of either land use changes (i.e. reforestation) or check‐dams to control sediment yield depends on the objective of the management and the specific environmental conditions of each area. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Combining the temperature and precipitation data from 77 climatological stations and the climatic and hydrological change data from three headstreams of the Tarim River: Hotan, Yarkant, and Aksu in the study area, the plausible association between climate change and the variability of water resources in the Tarim River Basin in recent years was investigated, the long-term trend of the hydrological time series including temperature, precipitation, and stream-flow was detected, and the possible association between the El Nino/Southern Oscillation (ENSO) and these three kinds of time series was tested. The results obtained in this study show that during the past years, the temperature experienced a significant monotonic increase at the speed of 5%, nearly 1℃rise; the precipitation showed a significant decrease in the 1970s, and a significant increase in the 1980s and 1990s, the average annual precipitation was increased with the magnitude of 6.8 mm per decade. A step change occurred in both temperature and  相似文献   

16.
This paper introduces the project on ‘Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)’ that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. In this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment, Germany. Substantial differences in model performance were observed with Nash–Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model performance are considered and that all models are suitable to participate in further multi-model ensemble set-ups and land use change scenario investigations.  相似文献   

17.
Soil moisture measurements by the neutron probe method were analysed to provide the parameters required for a daily model of actual evaporation from three land uses—grassland, indigenous bamboo and plantation softwood—in the Aberdare range of hills, Kenya. These daily estimates of evaporation were summed to provide annual totals and used, on a percentage land cover basis, in water balance calculations for three experimental mixed land use catchments, two of which were undergoing land use change. The annual water use, given by the difference between rainfall inputs and streamflow outputs, of the undisturbed catchment could normally be predicted to within 10%, whereas differences in the predicted and measured water use of the other two catchments were related to the changes in vegetation.  相似文献   

18.
土地利用/覆被变化对明晰气候变化和人类活动对湖泊水环境的影响有重要作用.以北方典型农牧交错的岱海流域为研究对象,基于遥感解译技术、马尔可夫转移矩阵、综合污染指数法等方法,对2000-2018年岱海流域土地利用/覆被和湖泊水质的变化进行分析,并结合冗余分析法和计量分析模型探究长时间序列尺度下土地利用/覆被变化对湖泊水质的...  相似文献   

19.
Abstract

Most climate change projections show important decreases in water availability in the Mediterranean region by the end of this century. We assess those main climate change impacts on water resources in three medium-sized catchments with varying climatic conditions in northeastern Spain. A combination of hydrological modelling and climate projections with B1 and A2 IPCC emission scenarios is performed to infer future streamflows. The largest reduction (34%) in mean streamflows (for 2076–2100) is expected in the headwaters of the two wettest catchments, while lower decreases (25% of mean value for 2076–2100) are expected in the drier one. In all three catchments, autumn and summer are the seasons with the most notable projected decreases in streamflow, of 50% and 30%, respectively. Thus, ecological flows in the study area might be noticeably influenced by climate change, especially in the headwaters of the wet catchments.  相似文献   

20.
Fog phenomena and their associated meteorological variables were continuously monitored during 4 years in an evergreen laurisilva cloud forest of the Anaga Massif Biosphere Reserve (Tenerife, Canary Islands), in order to establish its current dynamics. Fog was more frequent during night through early morning and in the afternoon, and particularly from May until September, coincidental with a frequent immersion of the 1025 m a.s.l. experimental site in the cloud layer of wind‐driven stratocumulus. The concomitant meteorological conditions during different fog regimes, characterized according to visibility (Ω) ranges, were compared with those when fog was absent. The presence of fog was associated with a significant reduction in global solar radiation, Rg, increased wind speed, and lower and more stable ambient temperatures. The foggy versus fog‐free hourly medians of Rg were found to be linearly related, whereas the proportion of median Rg reduction due to fog varied logarithmically with Ω. However, foggy versus fog‐free extreme values of the hourly Rg distributions departed from such a linear trend. By contrast, hourly temperatures during foggy versus fog‐free periods behaved linearly for most of the Ω range, except for very dense fog, Ω ≤ 100 m. Transpiration of the canopy, intermittently wetted due to interception of both rain and fog water droplets, was determined by quantifying the water balance at leaf scale with a mathematical model for the two representative hypostomatous species present at the site: the arboreal shrub Erica platycodon, with needle‐like leaves, and the laurophyll tree Myrica faya. Both tree transpiration and evaporation of the intercepted fog water were predictively higher during summer. By contrast, transpiration was reduced during February, in agreement with a 1 year period of sap velocity measurements, and was not appreciably affected by soil moisture content. The consequences of an anticipated downward shift of the stratocumulus cloud layer and of various projected Representative Concentration Pathways (RCPs) scenarios in the Macaronesian area were simulated, yielding in all cases a significant rise in transpiration for both species. Particularly, the simulated RCPs scenarios implied 29%–73% increments in transpiration from the actual values. Because fog is concomitant with lower temperatures and vapour pressure deficit, the modification of its current distribution as a consequence of climate change may have a direct effect on such associated meteorological variables, and therefore a meaningful impact in the water relations of the laurel cloud forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号