首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tilted Bianchi Type I cosmological model for perfect fluid distribution in presence of magnetic field, is investigated. To get a determinate solution, it has been assumed that the universe is filled with stiff perfect fluid distribution together with A=(BC) n where A,B,C are metric potentials and n is a constant. The behaviour of the model in presence and absence of magnetic field is discussed. The various physical and geometrical aspects of the model, is also discussed. It has been shown that tilted nature of the Bianchi Type I model is preserved due to magnetic field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
In this paper, we have investigated some tilted Bianchi Type I models with heat conduction filled with disordered radiation of perfect fluid. To get a determinate solution, we have assumed a condition A =(BC) n between metric potentials. Alternatively we have discussed the case A=(BC) 1/3 for which tilted nature of the model is preserved. The various and geometrical features with singularities in the models are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
In this paper, we have investigated that tilted Bianchi Type I cosmological models for stiff perfect fluid under a supplementary condition A = B n between metric potentials, is not possible. The tilted solution is also not possible when we assume A = t , B = t m , C = t n ; ℓ, m and n are constants for ε = p. Thus to preserve tilted nature of model, we assume p = γε, 0 ≤ γ ≤ 1 (barotropic equation of state) for the case A = t B = t m and C = t n . The physical and geometrical aspects of the models are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
It is investigated the behaviour of the “constants” G, c and Λ in the framework of a perfect fluid LRS Bianchi I cosmological model. It has been taken into account the effects of a c-variable into the curvature tensor. Two exact cosmological solutions are investigated, arriving t the conclusion that if q < 0 (deceleration parameter) then G, c are growing functions on time t while Λ is a negative decreasing function on time.  相似文献   

5.
Bianchi Type I Bulk viscous fluid tilted cosmological model without shearviscosity is investigated. The behaviour of the model in presence andabsence of bulk viscosity is discussed. The physical and geometricalconsequences of the models are also discussed.  相似文献   

6.
The combination of fluid inclusion analyses and microfossil analyses is an excellent method to study the preservation process of deep sub-seafloor microorganisms. By studying fluid inclusions in the same mineral phases as microfossils, it is possible to reconstruct the conditions that prevailed when the microorganisms where entombed and to put them in a geological and environmental context.This study has been performed on carbonate and gypsum veins in drilled basalt samples from three seamounts belonging to the Emperor Seamounts in the Pacific Ocean: Detroit, Nintoku and Koko Seamounts. The study show that variations in salt composition (MgCl2, NaCl, KCl and CaCl2) and salinity (2.1 and 10.5 eq. wt% NaCl) of the hydrothermal fluids do not have an influence on the occurrence of microfossils throughout the samples. The microorganisms were trapped and entombed at minimum temperatures of ∼130 °C which implies that the microorganisms could have existed at temperatures of ∼130 °C for shorter periods of time. The microorganisms were entrapped at shallow-marine to submarine conditions and the entrapment of the microorganisms occurred relatively late compared to the volcanic activity.  相似文献   

7.
Granitoid rock samples from the assumed center of the Keurusselkä impact site were subjected to a systematic study of fluid‐inclusion compositions and densities in various microstructures of the shocked quartz. The results are consistent with the following impact‐induced model of formation. After cessation of all major regional tectonic activity and advanced erosional uplift of the Fennoscandian shield, a meteorite impact (approximately 1.1 Ga) caused the formation of planar fractures (PFs) and planar deformation features (PDFs) and the migration of shock‐liberated metamorphic fluid (CO2 ± H2O) to the glass in the PDFs. Postimpact annealing of the PDFs led to the formation of CO2 (±H2O) fluid‐inclusion decorated PDFs. The scarce fluid‐inclusion implosion textures (IPs) suggest a shock pressure of 7.6–10 GPa. The postimpact pressure release and associated heating initiated hydrothermal activity that caused re‐opening of some PFs and their partial filling by moderate‐salinity/high temperature (>200 °C) H2O (+ chlorite + quartz) and moderate‐density CO2. The youngest postimpact endogenic sub‐ and nonplanar microfractures (MFs) are characterized by low‐density CO2 and low‐salinity/low‐temperature (<200 °C) H2O.  相似文献   

8.
Bianchi Type III massive string cosmological model for perfect fluid distribution in the presence of magnetic field, is investigated. It is assumed that the universe is filled with barotropic perfect fluid. We have attempted to investigate Bianchi Type III string cosmological model incorporating perfect fluid with magnetic field. To get the deterministic model in terms of cosmic time, we have assumed that the expansion (θ) in the model is proportional to the shear. We have also assumed that F 12 is the only non-vanishing component of electromagnetic field tensor F ij . The behaviour of the model in presence and absence of magnetic field together with singularities in these models are also discussed.  相似文献   

9.
In this paper, we have investigated a tilted Bianchi Type-III stiff fluid cosmological model in general relativity. To get a determinate solution, we have assumed a condition A=(BC) n between metric potentials. The various physical and geometrical aspects of the model are discussed.  相似文献   

10.
An investigation of the orbital period changes of the neglected eclipsing binaries, RY Aqr, SZ Her, RV Lyr and V913 Oph, is presented based on all published minima times. Although the explanation of magnetic activity on the surface of the secondaries of the studied Algols is still open, the preferred light‐time effect due to the unseen components around the systems seems more plausible in explaining the tilted sinusoidal variations with relatively high‐amplitudes. The minimal mass values of possible tertiary components have been estimated to be about 1.06, 0.25, 0.78 and 2.85 M for RY Aqr, SZ Her, RV Lyr and V913 Oph, respectively and the results indicate that their contributions to the total light of the eclipsing pairs are measurable with high accuracy photometric and spectroscopic data, if they exist. Applegate's (1992) model has been discussed as an alternative mechanism assuming that the cooler components have magnetic cycles. It is found that the model parameters of RY Aqr and V913 Oph are consistent with the required values in Applegate's model. In addition to the first detailed orbital study on these systems, a statistical survey on the character of the OC variations of classical Algols has revealed that about 50 percent of the systems show cyclic behavior. This means that the presence of possible third bodies around classical Algols should be tested with careful analysis using new data. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The current sheet in Earth’s magnetotail often flaps, and the flapping waves could be induced propagating towards the dawn and dusk flanks, which could make the current sheet dynamic. To explore the dynamic characteristics of current sheet associated with the flapping motion holistically and provide reasonable physical interpretations, detailed direct calculation and analysis have been applied to one approximate analytic model of magnetic field in the flapping current sheet. The main results from the model demonstrate: (1) the magnetic fluctuation amplitude is attenuated from the center of current sheet to the lobe regions; The larger wave amplitude would induce the larger magnetic amplitude; (2) the curvature of magnetic field lines (MFLs), with maximum at the center of current sheet, is only dependent on the displacement Z along the south-north direction from the center of current sheet, regardless of the tilt of current sheet; (3) the half-thickness of neutral sheet, h, the minimum curvature radius of MFLs, Rcmin, and the tilt angle of current sheet, δ, satisfies h=Rcmin cos δ; (4) the gradient of magnetic strength forms a double-peak profile, and the peak value would be more intense if the local current sheet is more tilted; (5) current density j and its jy, jz components reach the extremum at the center of CS. j and jz would be more intense if the local current sheet is more tilted, but it is not the case for jy; and (6) the field-aligned component of current density mainly appears in the neutral sheet, and the sign of it would change alternatively as the flapping waves passing by. To check the validity of the model, one simulation on the virtual measurements has been made, and the results are in well consistence with actual observations of Cluster.  相似文献   

12.
Exact solutions have been obtained for a massive fluid sphere under the extreme causality condition (dP/dρ)=1. Radial pulsational stability of these structures has been discussed. It is found that for pulsationally stable configurations the surface to central density ratio is greater than 0.30, the maximum values for surface and central redshifts are 0.85 and 3.40 respectively in the extreme case, and the maximum mass and size are respectively 4.8M and 20.1 km. It has also been shown that these structures are gravitationally bound, with a maximum binding energy per unit rest mass equal to 0.25 for a surface to central density ratio ?0.40. Slow rotation of these configurations has also been considered, and the relative drag and moment of inertia have been calculated. These results have been applied to the Crab pulsar and the mass of the pulsar has also been calculated based upon this model.  相似文献   

13.
Bianchi Type-V bulk viscous fluid string dust cosmological model in General Relativity is investigated. It has been shown that if coefficient of bulk viscosity (ζ) is inversely proportional to the expansion (θ) in the model then string cosmological model for Bianchi Type-V space-time is possible. In absence of bulk viscosity (ζ), i.e. when ζ → 0, then there is no string cosmological model for Bianchi Type-V space-time. The physical and geometrical aspects of the model are also discussed.  相似文献   

14.
In this paper, we solve the field equations in metric f(R) gravity for Bianchi type VI 0 spacetime and discuss evolution of the expanding universe. We find two types of non-vacuum solutions by taking isotropic and anisotropic fluids as the source of matter and dark energy. The physical behavior of these solutions is analyzed and compared in the future evolution with the help of some physical and geometrical parameters. It is concluded that in the presence of isotropic fluid, the model has singularity at [(t)\tilde]=0\tilde{t}=0 and represents continuously expanding shearing universe currently entering into phantom phase. In anisotropic fluid, the model has no initial singularity and exhibits the uniform accelerating expansion. However, the spacetime does not achieve isotropy as t→∞ in both of these solutions.  相似文献   

15.
During the nineteenth century, it was common for physicists to believe in the existence of a material vacuum composed of an incompressible fluid that fills the whole universe. This fluid was called the aether. Its original purpose was to provide an elastic tenuous medium for light propagation through space. Although it is well understood today that no such medium is needed for light propagation, the existence of a cosmic aether medium in space is still possible and its physical properties can be understood on models of cosmology that have nothing to do with Big-Bang cosmology. It is possible that electromagnetic radiation emitted by the cosmic aether medium has already been detected. The low-frequency electromagnetic radiation emitted by the aether is called the cosmic microwave background radiation. The present study outlines a model for an aether medium that explains the genesis of the microwave background radiation in a closed static (nonexpanding) universe. It is shown that the spectrum of the microwave background radiation is a perfect blackbody with a temperature T rad=2.77 K in harmony with the perfect cosmological principle. It is further shown that the aether medium is opaque at radio and microwave frequencies. This particular feature of the model does not contradict any observations regarding the existence of distant radio galaxies and quasars.  相似文献   

16.
Cylindrically symmetric inhomogeneous cosmological model for perfect fluid distribution with electromagnetic field is obtained. The source of the magnetic field is due to an electric current produced along the z-axis. F 12 is the non-vanishing component of electromagnetic field tensor. To get the deterministic solution, it has been assumed that the expansion θ in the model is proportional to the shear σ. Physical and geometric aspects of the models are also discussed in presence and absence of magnetic field.   相似文献   

17.
Recently it has been shown that for finite and small values of the electron Debye length, the ion polytropic coefficient is approached to some constant value in the plasma sheath region by decreasing the plasma density. In this paper, using a plasma multi fluid model, the effect of ion polytropic coefficient γ i on the plasma sheath structure have been examined. The numerical calculations of the basic equation of the model show that the polytropic coefficient strongly affects on the plasma sheath characteristics. The results show that by transition from an isothermal flow (γ i =1) to an adiabatic flow (γ i =3), the net current to the wall and the electric potential distribution increase and the sheath width decreases in a thermal plasma sheath.  相似文献   

18.
The Einstein equations are integrated for a tilted spatially self-similar Bianchi type-1I space-time with ‘stiff’ matter content. The solution represents an anisotropic model which tends to isotropic expansion in a special case.  相似文献   

19.
We consider one-soliton perturbations of a flat Friedmann-Robertson-Walker (FRW) cosmological model, with an ideal fluid with pressure equal to the energy density (stiff fluid), in the case where the “pole trajectory” parameter is negative, introducing thereby singularities along certain null hypersurfaces. Starting with a metric that approaches asymptotically the FR W background, we show that it is possible to construct an extension through these hypersurfaces such that the energy momentum tensor Tab is finite and satisfies the energy conditions. The extension is only C1, providing a sort of “shock front” with continuity in Tab, that has an associated phase transition from null dust to stiff fluid, the transition being of the form described by CHANDRASEKHAR and XANTHOPOULOS.  相似文献   

20.
Nonlinear calculations for the three-dimensional and time dependent convective flow in a plane parallel layer of fluid are carried out with parameter values appropriate for supergranules on the Sun. A rotation vector is used which is tilted from the vertical to represent various latitudes. For the incompressible fluid used in this model the solar rotation produces turning motions sufficient to completely twist a fluid column in about one day. It is suggested that this effect will be greatly enhanced in a compressible fluid. The tilted rotation vector produces anisotropies and systematic Reynolds stresses which drive mean flows. The resulting flows produce a rotation rate which increases inward and a meridional circulation with poleward flow along the outer surface.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号