首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Paleoshoreline evidence for postglacial tilting in Southern Manitoba   总被引:1,自引:0,他引:1  
Detailed air photo interpretation and four seasons of field mapping and surveying in southern Manitoba have revealed that the once-level paleoshorelines of Lake Winnipegosis and Dauphin Lake and the Burnside shoreline of former Lake Agassiz have been tilted up to the northeast by postglacial differential rebound. Our investigation has also revealed that Lake Winnipegosis has the best preserved paleoshoreline record of any of the large lakes in southern Manitoba, including lakes Winnipeg and Manitoba. This is because northeasterly uptilting shifts the region's lakes to the southwest. Lakes with southern outlets, like Lake Winnipegosis, undergo general regression as the outlet is lowered relative to the rest of the basin. Lakes with northern outlets, like lakes Winnipeg and Manitoba, undergo general transgression as northeasterly uptilting raises the outlet relative to the rest of the basin. Along the northeastern shore of Lake Winnipegosis a staircase of at least 32 abandoned Winnipegosis shorelines exists that is consistent with northeasterly tilting. The Dawson level represents the major mid-Holocene highstand on Lake Winnipegosis. It persisted for about 500 years, peaking at 5290 14C yr B.P. (early Dawson) and then falling about 3 m by 4740 14C yr B.P. (late Dawson). The early Dawson shoreline is tilted at 13.5 cm km-1 in a direction N24.3°E. Three other shorelines informally named shoreline 4, shoreline 3, and shoreline 2 are also tilted up to the northeast. Their radiocarbon ages (and slopes in cm km-1) are 3330 yr B.P. (2.2), 1510 yr B.P. (1.3), and 1080 yr B.P. (0.7), respectively. On Dauphin Lake shoreline IV is the oldest level mapped for this study. It has a 14C age of 7910 yr B.P. and is tilted at 21.7 cm km-1 in a direction N44.4°E. The Id shoreline marks the major mid-Holocene highstand for Dauphin Lake. It peaked at 4640 14C yr B.P. followed by a rapid decline of about 1 m to the Ib shoreline, which is dated at 4320 14C yr B.P. Id is tilted up at 8.8 cm km-1 in a direction N53.4°E. The next major shoreline is Ia3 which has a 14C age of 3020 yr B.P. and is tilted up at 5.3 cm km-1 in a direction N62.3°E. Tilt directions are significantly more easterly for the Dauphin Lake shorelines than those from Lake Winnipegosis or any of the much older Lake Agassiz shorelines. Taken together, the Winnipegosis and Dauphin isobases indicate that the direction of tilt in southern Manitoba is more complex than a simple uni-directional pattern. The observed pattern of tilting for paleoshorelines in southern Manitoba agrees better with predictions derived from the recently revised loading history model ICE-4G than with those from its predecessor ICE-3G. In general, the calculated tilt based on the ICE-3G load tends to exceed the observed tilt, while ICE-4G tends to underestimate it. Both ice load models appear to disagree most with our observed tilts in this region during the interval before about 9000 cal yr B.P., when deglaciation was proceeding rapidly and the large water load associated with Lake Agassiz covered the region. Because both of these ice load models have been estimated mainly from a global data set of relative sea level curves from marine coast sites, it is not unexpected that model tilts derived from them do not agree well with observations in the North American continental interior. The pattern of postglacial crustal deformation for southern Manitoba described in this paper could be used to further refine ice load models for the North American continental interior.  相似文献   

2.
Inference of mantle viscosity from GRACE and relative sea level data   总被引:12,自引:0,他引:12  
Gravity Recovery And Climate Experiment (GRACE) satellite observations of secular changes in gravity near Hudson Bay, and geological measurements of relative sea level (RSL) changes over the last 10 000 yr in the same region, are used in a Monte Carlo inversion to infer-mantle viscosity structure. The GRACE secular change in gravity shows a significant positive anomaly over a broad region (>3000 km) near Hudson Bay with a maximum of ∼2.5 μGal yr−1 slightly west of Hudson Bay. The pattern of this anomaly is remarkably consistent with that predicted for postglacial rebound using the ICE-5G deglaciation history, strongly suggesting a postglacial rebound origin for the gravity change. We find that the GRACE and RSL data are insensitive to mantle viscosity below 1800 km depth, a conclusion similar to that from previous studies that used only RSL data. For a mantle with homogeneous viscosity, the GRACE and RSL data require a viscosity between  1.4 × 1021  and  2.3 × 1021  Pa s. An inversion for two mantle viscosity layers separated at a depth of 670 km, shows an ensemble of viscosity structures compatible with the data. While the lowest misfit occurs for upper- and lower-mantle viscosities of  5.3 × 1020  and  2.3 × 1021  Pa s, respectively, a weaker upper mantle may be compensated by a stronger lower mantle, such that there exist other models that also provide a reasonable fit to the data. We find that the GRACE and RSL data used in this study cannot resolve more than two layers in the upper 1800 km of the mantle.  相似文献   

3.
Although studies on glacial isostatic adjustment usually assume a purely linear rheology, we have previously shown that mantle relaxation after the melting of Laurentide ice sheet is better described by a composite rheology including a non-linear term. This modelling is, however, based on axially symmetric geometry and glacial forcing derived from ICE-3G and suffers from a certain amount of arbitrariness in the definition of the ice load. In this work we apply adjusted spherical harmonics analysis to interpolate the ice thicknesses of ICE-3G and ICE-1 glaciological models. This filters out the non-axisymmetric components of the ice load by considering only the zonal terms in the spherical harmonics expansion. The resulting load function is used in finite-element simulation of postglacial rebound to compare composite versus purely linear rheology. Our results confirm that composite rheology can explain relative sea level (RSL) data in North America significantly better than a purely linear rheology. The performance of composite rheology suggests that in future investigations, it may be better to use this more physically realistic creep law for modelling mantle deformation induced by glacial forcing.  相似文献   

4.
Relative sea level curves from glaciated North America reveal coherent spatial patterns of response times. In the Laurentide Ice Sheet area, curve half-lives range from 1.2–1.4 ka at the uplift centre to 1.7–2 ka in a ridge of high values inboard of the glacial limit. Half-lives decline from this ridge to less than 1 ka along the margin. In the Innuitian Ice Sheet area, half-lives are about 2 ka at the uplift centre and decline to less than 1 ka at the margin. The central Laurentide response times are about half those of central Fennoscandia. This accords with the theoretical expectation that central response times are inversely proportional to ice sheet radius for ice loads large enough that rebound at the centre is insensitive to lithospheric thickness. The Innuitian central response time indicates that rebound at the centre of this ice sheet, which is much smaller than the Fennoscandian Ice Sheet, remains sensitive to lithospheric thickness. Radial gradients in response times reflect the increasing influence of the lithosphere at sites increasingly closer to the margin. Along this gradient, rebound progresses as though at the centres of smaller and smaller ice sheets. That is, the effective spatial scale of the ice load decreases toward the margin. Near the glacial limit, postglacial isostatic adjustment is complicated by forebulge migration and collapse. This is seen most strongly in the relative sea level record of Atlantic Canada, which has subsided during the Holocene more than 20 m more than the adjacent American seaboard. The relative sea level history of some areas, notably the St. Lawrence Estuary, is complicated by tectonic processes.  相似文献   

5.
Summary. Recent results from the analysis of postglacial rebound data suggest that the viscosity of the Earth's mantle increases through the transition region. Models which fit both relative sea-level and free air gravity data have viscosities which increase from a value near 1022 poise in the upper mantle beneath the lithosphere to a value of about 1023 poise in the lower mantle. In this paper we analyse the effect of deglaciation upon the Earth's rotation and thereby show that the observed secular trend (polar wander) evident in the ILS—IPMS pole path, and measurements of the non-tidal acceleration of the length of day, are both consistent with the viscosity profile deduced from postglacial rebound. The two analyses are therefore mutually reinforcing.  相似文献   

6.
Because of differential isostatic rebound, many lakes in Canada have continued to change their extent and depth since retreat of the Laurentide Ice Sheet. Using GIS techniques, the changing configuration and bathymetry of Lake of the Woods in Ontario, Manitoba, and Minnesota were reconstructed for 12 points in time, beginning at 11,000 cal yr B.P. (9.6 14C ka B.P.), and were also projected 500 years into the future, based on the assumption that Lake of the Woods continued to have a positive hydrological budget throughout the Holocene. This modeling was done by first compiling a bathymetric database and merging that with subaerial data from the Shuttle Radar Topography Mission (SRTM). This DEM file was then adjusted by: (1) isobase data derived from Lake Agassiz beaches prior to 9000 cal yr B.P. (8.1 14C ka B.P.) and (2) modeled isostatic rebound trend analysis after 9000 cal yr B.P. Just after the end of the Lake Agassiz phase of Lake of the Woods, only the northernmost part of the basin contained water. Differential rebound has resulted in increasing water depth. In the first 3000 years of independence from Lake Agassiz, the lake transgressed >50 km to the south, expanding its area from 858 to 2857 km2, and more than doubling in volume. Continued differential rebound after 6000 cal yr B.P. (5.2 14C ka B.P.) has further expanded the lake, although today it is deepening by only a few cm per century at the southern end. In addition, climate change in the Holocene probably played a role in lake level fluctuations. Based on our calculation of a modern hydrological budget for Lake of the Woods, reducing runoff and precipitation by 65% and increasing evaporation from the lake by 40% would end overflow and cause the level of the lake to fall below the outlets at Kenora. Because this climate change is comparable to that recorded during the mid-Holocene warming across the region, it is likely that the area covered by the lake at this time would have been less than that determined from differential isostatic rebound alone.  相似文献   

7.
Postglacial rebound and fault instability in Fennoscandia   总被引:5,自引:0,他引:5  
The best available rebound model is used to investigate the role that postglacial rebound plays in triggering seismicity in Fennoscandia. The salient features of the model include tectonic stress due to spreading at the North Atlantic Ridge, overburden pressure, gravitationally self-consistent ocean loading, and the realistic deglaciation history and compressible earth model which best fits the sea-level and ice data in Fennoscandia. The model predicts the spatio-temporal evolution of the state of stress, the magnitude of fault instability, the timing of the onset of this instability, and the mode of failure of lateglacial and postglacial seismicity. The consistency of the predictions with the observations suggests that postglacial rebound is probably the cause of the large postglacial thrust faults observed in Fennoscandia. The model also predicts a uniform stress field and instability in central Fennoscandia for the present, with thrust faulting as the predicted mode of failure. However, the lack of spatial correlation of the present seismicity with the region of uplift, and the existence of strike-slip and normal modes of current seismicity are inconsistent with this model. Further unmodelled factors such as the presence of high-angle faults in the central region of uplift along the Baltic coast would be required in order to explain the pattern of seismicity today in terms of postglacial rebound stress. The sensitivity of the model predictions to the effects of compressibility, tectonic stress, viscosity and ice model is also investigated. For sites outside the ice margin, it is found that the mode of failure is sensitive to the presence of tectonic stress and that the onset timing is also dependent on compressibility. For sites within the ice margin, the effect of Earth rheology is shown to be small. However, ice load history is shown to have larger effects on the onset time of earthquakes and the magnitude of fault instability.  相似文献   

8.
In Paper I (Breuer & Wolf 1995), a preliminary interpretation of the postglacial land emergence observed at a restricted set of six locations in the Svalbard Archipelago was given. The study was based on a simple model of the Barents Sea ice sheet and suggested increases in lithosphere thickness and asthenosphere viscosity with increasing distance from the continental margin.
In the present paper, the newly developed high-resolution load model. BARENTS-2, and land-uplift observations from an extended set of 25 locations are used to study further the possibility of resolving lateral heterogeneity in the upper mantle below the northern Barents Sea. A comparison of the calculated and observed uplift values shows that the lithosphere thickness is not well resolved by the observations, although values above 110 km are most common for this parameter. In contrast to this, there are indications of a lateral variation of asthenosphere viscosity. Whereas values in the range 1018-1020Pas are inferred for locations close to the continental margin, 1020-1021 Pa s are suggested further away from the margin.
A study of the sensitivity of the values found for lithosphere thickness and asthenosphere viscosity to modifications of load model BARENTS-2 shows that such modifications can be largely accommodated by appropriate changes in lithosphere thickness, whereas the suggested lateral variation of asthenosphere viscosity is essentially unaffected. An estimate of the influence of the Fennoscandian. ice sheet leads to the conclusion that its neglect results in an underestimation of the thickness of the Barents Sea ice sheet by about 10 per cent.  相似文献   

9.
Absolute gravity observations yield insight into geophysical phenomena such as postglacial rebound, change in the Earth's hydrological cycle, sea level change, and changes in the Earth's cryosphere. In the article, the first gravity values at 16 Norwegian stations measured by a modern absolute gravimeter of the FG5 type are presented. The gravity observations were corrected for Earth tides, varying atmospheric pressure, polar motion, and ocean tide loading. The ocean tide loading corrections were subject to special attention. A model based on locally observed ocean tides was applied at some of the stations. The authors estimated the total uncertainties of the gravity values to range from 3 to 4 µgal (1 µgal = 10?8 m s?2). These errors are of magnitude one order less than previously presented absolute gravity values from Norway. The final gravity values are time tagged and will change due to postglacial rebound. The maximum effect is expected to be approximately ?1 µgal yr?1.  相似文献   

10.
Previous investigations of the causal relationship between postglacial rebound and earthquakes in eastern Canada have focused on the mode of failure and the observed timing of the pulse of earthquake/faulting activity following deglaciation. In this study, the observational database has been extended to include observed orientations of the contemporary stress field and the rotation of stress since deglacial times. It is shown that many of these observations can be explained by a realistic ice history and a viscoelastic earth with a uniform 1021 Pa s mantle.
The effects of viscosity structure on the above predictions are also examined. It is shown that, since most of the above observations are found within the ice margin, they are not very sensitive to lithospheric thickness. Also, the inclusion of a 25 or 50 km ductile layer within the lithosphere will not decouple the seismogenic upper crust. High viscosity (1022 Pa s) in the lower mantle is rejected by the stress orientation and rotation observations. A low-viscosity (6 times 1020Pa s) upper mantle with 1.6 times 1021 Pa s in the upper part of the lower mantle and 3 times 1021 Pa s in the lower part of the lower mantle below 1200 km depth has been found to give predictions that are in general agreement with the observations.  相似文献   

11.
The post-seismic response of a viscoelastic Earth to a seismic dislocation can be computed analytically within the framework of normal-modes, based on the application of propagator methods. This technique, widely documented in the literature, suffers from several shortcomings; the main drawback is related to the numerical solution of the secular equation, whose degree increases linearly with the number of viscoelastic layers so that only coarse-layered models are practically solvable. Recently, a viable alternative to the standard normal-mode approach, based on the Post–Widder Laplace inversion formula, has been proposed in the realm of postglacial rebound models. The main advantage of this method is to bypass the explicit solution of the secular equation, while retaining the analytical structure of the propagator formalism. At the same time, the numerical computation is much simplified so that additional features such as linear non-Maxwell rheologies can be simply implemented. In this work, for the first time, we apply the Post–Widder Laplace inversion formula to a post-seismic rebound model. We test the method against the standard normal-mode solution and we perform various benchmarks aimed to tune the algorithm and to optimize computation performance while ensuring the stability of the solution. As an application, we address the issue of finding the minimum number of layers with distinct elastic properties needed to accurately describe the post-seismic relaxation of a realistic Earth model. Finally, we demonstrate the potentialities of our code by modelling the post-seismic relaxation after the 2004 Sumatra–Andaman earthquake comparing results based upon Maxwell and Burgers rheologies.  相似文献   

12.
During the last glacial cycles, global sea level dropped several times by about 120 m and large ice sheets covered North America, northern Europe and Antarctica during the glacial stages. The changes in the iceocean mass balance have displaced mantle material mainly via viscous flow, and the perturbation of the equilibrium figure of the Earth by glacial isostatic adjustment is still observable today in timedependent changes of gravitational and rotational observations. Contemporary iceocean mass balance from volume changes of polar ice caps also contributes to secular variations of the Earth's gravitational field.
In the near future, several satellite gravity missions will significantly improve the accuracy of the observed timedependent gravitational field. In view of the expected improvements in the observations, we predict glacially induced perturbations of the gravitational field, induced by Late Pleistocene and contemporary ice volume changes, for a variety of radial mantle viscosity profiles. We assess the degree of uncertainty for the glacially induced contributions to gravitational and rotational parameters, both in the spectral and the spatial domain.
Predictions of power spectra for the glacially induced freeair gravity and geoid anomalies are about one order of magnitude lower than the observed values, and uncertainties arising from different plausible viscosity profiles are around 0.150.4 mGal and 0.21.5 m, respectively. Uncertainties from different ice models are of secondary importance for the predicted power spectra. Predicted secular changes in geoid anomalies in formerly glaciated areas are mainly controlled by the viscosity profile and contemporary ice volume changes. We also show that the simple threelayer viscosity profiles currently employed for the majority of postglacial rebound studies represent a limited subset for model predictions of the timedependent gravitational field.  相似文献   

13.
A two-layer lithospheric stretching model that includes the effects of decompression melting was used to estimate the deformation and thermal evolution of the Queen Charlotte Basin, British Columbia. The basin contains up to 6 km of Tertiary fill and is postulated to have been formed during a transtensional stage of Cenozoic plate motion between the Pacific and North American plates. Several models of basin formation have been proposed to explain the sediment distribution, contemporaneous volcanism and high present-day heat flow. We used bathymetry, Tertiary sediment thickness and crustal thickness to calculate the amount of stretching in the crust and lower lithosphere, and the volume of melt generated during advection of mantle rocks. A second set of calculations traced the thermal evolution of the sediments and lithosphere, and we show maps of estimated present-day heat flow and sediment maturity. This study differs significantly from previous work in the use of gridded data that provide coverage over a large region and permit lateral variations in lithospheric deformation and thermal properties to be clearly defined, a difficult quest in studies based on single-point or profile data. In addition, the use of crustal thickness, derived from a regional interpretation of gravity data and constrained by seismic refraction results, as an input allows reliable estimates of extension to be made despite recent deformation of sedimentary strata in Hecate Strait. We present results for a model which used a prerift crustal thickness of ≈34 km and a short rifting period from 25 to 20 Ma. This model infers that significant thinning occurred beneath south-western Hecate Strait and southern Queen Charlotte Sound, and several kilometres of igneous crust were added at these sites, without requiring elevated asthenospheric temperatures prior to extension. Net lithospheric extension is surprisingly uniform within the basin and averages 76%, or ≈50 km, across the margin. This amount is consistent with other estimates of extension and may provide information useful in refining models of plate motion along this margin.  相似文献   

14.
Summary. Flexure studies of the oceanic lithosphere constrained by bathymetry and gravity data suggest that the lithosphere behaves elastically over geological time-scales. For loads to be supported, however, large bending stresses (approaching 10 kb in some cases) are required at the top and bottom of the elastic plate.
These stress-differences can be significantly reduced by introducing more complex rheologies: we propose a model of layered lithosphere, consisting of a purely elastic upper layer, a transition zone with viscosity varying with depth and a perfectly plastic lower layer. The transition layer is grossly centred at the bottom of the elastic plate. Such a model results in a noticeable reduction of stress differences; reaching 60 per cent for flow laws representing creep mechanisms in olivine. When applied to a number of seamount loads, this model leads to maximum stress-differences which do not exceed 1–2kb.
The approach used in this study allows us to follow stress relaxation over time. Taking account of the thermal cooling of the lithosphere, we show that the elastic thickness of the lithosphere is stabilized after a given time, while the time required for stabilization is found to be of the order 5—6 per cent of the age of the lithosphere at the date of loading.  相似文献   

15.
Preliminary results of a multidisciplinary study of cores in southwestern Lake Michigan suggest that the materials in these cores can be interpreted in terms of both isostatically and climatically induced changes in lake level. Ostracodes and mollusks are well preserved in the Holocene sediments, and they provide paleolimnologic and paleoclimatic data, as well as biogenic carbonate for stable-isotope studies and radiocarbon dating. Pollen and diatom preservation in the cores is poor, which prevents comparison with regional vegetation records. New accelerator-mass spectrometer 14C ages, from both carbon and carbonate fractions, provide basin-wide correlations and appear to resolve the longstanding problem of anomalously old ages that result from detrital organic matter in Great Lakes sediments.Several cores contain a distinct unconformity associated with the abrupt fall in lake level that occurred about 10.3 ka when the isostatically depressed North Bay outlet was uncovered by the retreating Laurentide Ice Sheet. Below the unconformity, ostracode assemblages imply deep, cold water with very low total dissolved solids (TDS), and bivalves have 18O (PDB) values as light as — 10 per mil. Samples from just above the unconformity contain littoral to sublittoral ostracode species that imply warmer, higher-TDS (though still dilute) water than that inferred below the unconformity. Above this zone, another interval with 18O values more negative than — 10 occurs. The isotopic data suggest that two influxes of cold, isotopically light meltwater from Laurentide ice entered the lake, one shortly before 10.3 ka and the other about 9 ka. These influxes were separated by a period during which the lake was warmer, shallower, but still very low in dissolved solids. One or both of the meltwater influxes may be related to discharge from Lake Agassiz into the Great Lakes.Sedimentation rates appear to have been constant from about 10 ka to 5 ka. Bivalve shells formed between about 8 and 5 ka have 18O values that range from-2.3 to-3.3 per mil and appear to decrease toward the end of the interval. The ostracode assemblages and the stable isotopes suggest changes that are climatically controlled, including fluctuating water levels and increasing dissolved solids, although the water remained relatively dilute (TDS < 300 mg/l).A dramatic decrease in sedimentation rates occurred at about 5 ka, about the time of the peak of the Nippissing high lake stage. This decrease in sedimentation rate may be associated with a large increase in effective wave base as the lake approached its present size and fetch. A dramatic reduction in ostracode and mollusk abundances during the late Holocene is probably due to this decrease in sedimentation rates, which would result in increased carbonate dissolution. Ostracode productivity may also have declined due to a reduction in bottom-water oxygen caused by increased epilimnion algal productivity.Woods Hole Oceanographic Institute Contribution No. 7492  相似文献   

16.
Airborne lidar data from the northern Puget Lowland provide information on the spatial variability and amplitude of raised postglacial shorelines, marine deltaic features and glaciomarine sediments deposited between approximately c. 12 920 and 11 050 14C yr BP (15 960‐12 364 cal yr BP). Relict shorelines preserved in embayments on Whidbey and Camano islands (between 47°54′N and 48°24′N) are found up to an altitude of c. 90 m and record glacio‐isostatic movements attributed to postglacial rebound. The tilt of the regional minimum highstand sea level surface to the north of 0.80 m km?1, with local variability from 0.25 m km?1 to 0.77 m km?1, is consistent with previous studies (Thorson 1989; Dethier et al. 1995). The local variability is related to the uncertainty in the depth of the water column above these features at the time of deposition and probable tectonic deformation. The information generated by these lidar data is most valuable in posing new research questions, generating alternative research hypotheses to those already formulated in the northern Puget Lowland.  相似文献   

17.
The thermal evolution of the Earth is controlled by radioactive elements whose heat production rate decays with time and whose spatial distribution depends on chemical segregation processes.
We present a 2-D and finite-difference Boussinesq convection model with temperature-dependent viscosity and time- and space-dependent radioactive heat sources. We used Newtonian rheology, boxes of aspect ratio 3, and heating from within. Starting from the geochemical results of Hofmann (1988), it is assumed that the radioactive heat sources of the mantle were initially distributed homogeneously. In a number of calculations, however, higher starting abundances of radioactive sources were assumed in the upper mantle. For the present geological situation, this also results in a depleted upper mantle. It was assumed that, if the viscosity falls below a certain critical value, chemical segregation will take place. In this way, model continental crust develops, leaving behind areas of a depleted mantle. We obtained the heat source, flow line, temperature, viscosity and heat-flow distribution as a function of time with realistic values, especially for the present time. The present viscosity of the upper mantle is approximately at the standard value obtained for postglacial uplift modelling; the deeper-mantle viscosity is considerably higher. The time dependence of the computed mean of the kinetic energy of mantle convection bears a resemblance to that of the magmatic and orogenetic activity of the Earth. We assumed that the 670 km discontinuity cannot be penetrated by the flow.  相似文献   

18.
Summary. Models of shallow, global mantle circulation due to the accretion and subduction of lithospheric plates are formulated as potential theory problems on a sphere. Subducting and accreting plate boundaries represent sources and sinks respectively for the sublithospheric flow. Solutions, which are obtained by finite difference approximations, give the instantaneous flow velocities within the asthenosphere compatible with plate boundaries and relative plate motions. Results are presented for present-day plate boundaries and relative plate motions for the case of a uniform viscosity asthenosphere and for that of a low viscosity zone at the base of the lithosphere. These results are discussed in terms of available geophysical data. Some of the implications of a shallow, mantle-wide circulation are also considered.  相似文献   

19.
A high water phase in the Lake Erie basin is identified from a variety of evidence for the period 11.0 ka to 10.5 ka. It is believed to correspond to the first Agassiz inflow to the upper Great Lakes (Main Lake Algonquin phase) when Agassiz waters discharged in both catastrophic and equilibrium modes to Lake Superior. After allowing for differential isostatic rebound, a computational model is used to estimate the lake levels in the Erie basin needed to generate Agassiz-equivalent discharges out of the basin into Lake Ontario. Computations suggest that Lake Tonawanda spillways would be re-activated by the high lake levels needed to sustain Agassiz-equivalent discharges. Existing published evidence from the Erie basin, Niagara River, and western New York (including 14C dates), is consistent with this interpretation. Additional evidence from the Niagara Peninsula (pollen spectra and geomorphology) supports the inference that extensive flooding of the southern Niagara Peninsula (Lake Wainfleet) occurred due to high water levels in the Erie basin. In the Niagara Peninsula, very shallow washover spillways would only operate when standard hydrologic variations of lake level in the Erie basin coincided with short term high levels driven by catastrophic inflows to the Great Lakes from Lake Agassiz. We support the view of Lewis & Anderson (1992) that a meltwater flux from Agassiz inflows reached Lake Erie.  相似文献   

20.
Over the last 12600 years, lake levels in the eastern Lake Erie basin have fluctuated dramatically, causing major changes in drainage patterns, flooding and draining ephemeral Lake Wainfleet several times and widening and narrowing the Niagara Gorge as the erosive effects of Niagara Falls waxed and waned. The control sill for Lake Erie levels was at first the Fort Erie/Buffalo sill, before the Lyell/Johnson sill in Niagara Falls took over due to isostatic rebound. This sill, in time, was eventually eroded by the recession of Niagara Falls and the Fort Erie/Buffalo sill regained control. The environmental picture is complicated by catastrophic outbursts from glacial Lake Agassiz and Lake Barlow-Ojibway, changes in outlet routes, isostatic rebound and climatic changes over the Great Lakes basins. Today, the flow of water into Lake Erie from the streams and rivers surrounding it only accounts for about 13% of the flow out of it, therefore, the importance of flow from the Upper Great Lakes, specifically the flow from Lake Huron, has a great effect on Lake Erie levels. While the changing control sills, Lyell/Johnson and Buffalo/Fort Erie would affect Lake Erie levels, overall they are mostly input driven by the amount of waters received from the Upper Great Lakes. Since Lake Erie's water level changes are so closely tied to Lake Huron's water level changes we have decided to use names assigned to Lake Huron such as the two Mattawa highstands and three Stanley lowstands rather than inflict a whole new set of names on the public. While the duration of each high and lowstand in Erie and Huron may not always be the same, they always happen within the same time frame. The datum elevations used for Lake Huron (175.8 m) and Lake Erie (173.3 m) are historically recorded averages. The Lake Erie levels proposed in this paper reflect Lake Hurons effects on Lake Erie and the levels occuring at the eastern end of the Erie Basin throughout the last 12600 years. All dates in this paper are uncorrected 14 C dates unless the date was obtained from shells, then the date has been corrected for hard-water effects. Also, all heights are given as modern day elevations and are not adjusted for isostatic rebound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号