首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A radiation and diffraction boundary value problem is investigated. It arises from the interaction of linear water waves with a freely floating rectangular structure in a semi-infinite fluid domain of finite water depth with the leeward boundary being a vertical wall. Analytical expressions for the radiated potentials and the diffracted potential are obtained by use of the method of separation of variables and the eigenfunction expansion method. The added masses and damping coefficients for the structure heaving, swaying and rolling in calm water are obtained by use of the corresponding radiated potentials and the wave excitation forces are calculated by use of the diffracted potential. To verify the correctness of the method, a boundary element method is used. A comparison of the analytical results with those obtained by the boundary element method is made and good agreement is achieved, which shows that the analytical expressions for the radiated and diffracted potentials are correct. By use of the present analytical solution, the added mass, damping coefficients, wave excitation force, together with the hydrodynamic effects of the draft, width of the structure and the clearance between the structure and the sidewall are also investigated.  相似文献   

2.
The radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas of finite depth is investigated. The analytical expressions for the radiated and diffracted potentials are derived as infinite series by use of the method of separation of variables. The unknown coefficients in the series are determined by the eigenfunction expansion matching method. The expressions for wave forces, hydrodynamic coefficients and reflection and transmission coefficients are given and verified by the boundary element method. Using the present analytical solution, the hydrodynamic influences of the angle of incidence, the submergence, the width and the thickness of the structure on the wave forces, hydrodynamic coefficients, and reflection and transmission coefficients are discussed in detail.  相似文献   

3.
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.  相似文献   

4.
Wave radiation by a floating rectangular structure in oblique seas   总被引:1,自引:0,他引:1  
The linear wave radiation by a long floating rectangular structure in oblique seas of finite depth is investigated by use of the method of separation of variables and the eigenfunction expansion matching method. Analytical expressions for the radiated potentials, wave forces and hydrodynamic coefficients are given. The correctness of these expressions is verified through two specific examples investigated previously by other numerical methods. Using the present analytical solution, the hydrodynamic effects of the angle of incidence, the draft and the width of the structure on the wave forces and hydrodynamic coefficients are discussed in detail which may provide some useful information for the design of rectangular structures in oblique seas.  相似文献   

5.
月池内流体存在活塞和晃荡两类振荡现象。基于线性势流理论,推导了波浪斜向入射下,直墙前矩形月池辐射和绕射问题的解析解。通过分离变量法和特征函数展开法求解了速度势函数,根据边界条件来确定速度势函数中的未知系数,由速度势函数计算斜向波与矩形月池相互作用的水动力系数和波浪激励力,对它们的变化规律进行了分析讨论,研究了底部开口大小、波浪入射角度对矩形月池水动力特性的影响以及直墙远近对波浪力的影响。结果表明,月池底部开口大小对流体水平作用的影响较小,而对流体垂直作用的影响较大;波浪入射角度的变化对矩形月池横荡和横摇运动时的水动力特性有一定的影响;在一定条件下,直墙的存在会使得月池在水平方向所受到的波浪力比开敞水域中的要大。  相似文献   

6.
The hydrodynamic problem arising form the interaction of linear water waves with a wave energy device consisting of two coaxial vertical cylinders of different radii is investigated. One cylinder is riding in waves, while another is submerged in fluid. By use of the method of separation of variables and the method of matched eigenfunction expansion, analytical expressions for the potentials are obtained. Using the expressions for the potentials, analytical expressions for the hydrodynamic coefficients and exciting forces/moments on the device are obtained. Numerical results of the hydrodynamic coefficients and exciting forces/moments are presented for some ratios of the radius of the submerged cylinder to that of the riding one. It is found that the radius of the submerged cylinder has a significant influence on the hydrodynamic coefficients and exciting forces/moments for relatively bigger radius of the submerged cylinder at low frequencies.  相似文献   

7.
A two-dimensional analytical solution is presented to study the reflection and transmission of linear water waves propagating past a submerged horizontal plate and through a vertical porous wall. The velocity potential in each fluid domain is formulated using three sets of orthogonal eigenfunctions and the unknown coefficients are determined from the matching conditions. Wave elevations and hydrodynamic forces acting on the porous wall are computed. Reflection and transmission coefficients are presented to examine the performance of the breakwater system. The present analytical solutions are found in fairly good agreement with the available laboratory data. The results indicate that the plate length, the porous-effect, the gap between plate and porous wall, and the submerged depth of the plate all show a significant influence on the reflected and transmitted wave fields. It is also interesting to note that the submerged plate plays an important role in reducing the transmitted wave height, especially for long incident waves.  相似文献   

8.
Wave interaction with a wave absorbing double curtain-wall breakwater   总被引:3,自引:0,他引:3  
Yong Liu  Yu-cheng Li 《Ocean Engineering》2011,38(10):1237-1245
This study examines the hydrodynamic performance of a wave absorbing double curtain-wall breakwater. The breakwater consists of a seaward perforated wall and a shoreward impermeable wall. Both walls extend from above the seawater to some distance above the seabed. Then the below gap allows the seawater exchange, the sediment transport and the fish passage. By means of the eigenfunction expansion method and a least square approach, a linear analytical solution is developed for the interaction of water waves with the breakwater. Then the reflection coefficient, the transmission coefficient and the wave forces acting on the walls are calculated. The numerical results obtained for limiting cases agree very well with previous predictions for a single partially immersed impermeable wall, the double partially immersed impermeable walls and the bottom-standing Jarlan-type breakwater. The predicted reflection coefficients for the present breakwater also agree reasonable with previous experimental results. Numerical results show that with appropriate structure parameters, the reflection and transmission coefficients of the breakwater may be both below 0.5 at a wide range of the relative water depth. At the same time, the magnitude of wave force acting on each wall is small. This is significant for practical engineering.  相似文献   

9.
The radiation and diffraction problem of a two-dimensional rectangular body with an opening floating on a semi-infinite fluid domain of finite water depth is analysed based on the linearized velocity potential theory through an analytical solution procedure. The expressions for potentials are obtained by the method of variation separation, in which the unknown coefficients are determined by the boundary condition and matching requirement on the interface. The effects of the position of the hole and the gap between the body and side wall on hydrodynamic characteristics are investigated. Some resonance is observed like piston motion in a moon pool and sloshing in a closed tank because of the existence of restricted fluid domains.  相似文献   

10.
An effective boundary element method (BEM) is presented for the interaction between oblique waves and long prismatic structures in water of finite depth. The Green's function used here is the basic Green's function that does not satisfy any boundary condition. Therefore, the discretized elements for the computation must be placed on all the boundaries. To improve the computational efficiency and accuracy, a modified method for treatment of the open boundary conditions and a direct analytical approach for the singularity integrals in the boundary integral equation are adopted. The present BEM method is applied to the calculation of hydrodynamic coefficients and wave exciting forces for long horizontal rectangular and circular structures. The performance of the present method is demonstrated by comparisons of results with those generated by other analytical and numerical methods.  相似文献   

11.
The two-dimensional problems concerning the interaction of linear water waves with cylinders of arbitrary shape in two-layer deep water are investigated by use of the Boundary Integral Equation Method (BIEM). Simpler new expressions for the Green functions are derived, and verified by comparison of results obtained by BIEM with those by an analytical method. Examined are the radiation and scattering of linear waves by two typical configurations of cylinders in two-layer deep water. Hydrodynamic behaviors including hydrodynamic coefficients, wave forces, reflection and transmission coefficients and energies are analyzed in detail, and some interesting physical phenomena are observed.  相似文献   

12.
刘勇  姚卓琳  李华军 《海洋工程》2015,29(6):793-806
The present study proposes a new semi-immersed Jarlan-type perforated breakwater including a perforated front wall, a solid rear wall, and a horizontal perforated plate connecting the lower tips of the two walls. An analytical solution is developed to estimate the hydrodynamic performance of the new breakwater. The analytical solution is confirmed by solutions for special cases, an independently developed multi-domain boundary element method solution and experimental data. Numerical examples based on the analytical solution indicate that compared with previous semi-immersed breakwaters, the new breakwater may have better wave-absorbing performance and smaller wave forces. Some useful results are presented for practical designs of semi-immersed Jarlan-type perforated breakwaters.  相似文献   

13.
An impedance analytical method (IAM) is developed to study the interaction between regular waves and a perforated-wall caisson breakwater that consists of a front perforated-wall and a chamber with a rigid impermeable back wall. The boundary conditions at the perforated-wall are established in terms of the flow resistances of the fluid passing through the holes. As a result, explicit algebraic expressions are obtained for reflection coefficients and wave loads. In the formulae, all of the parameters are known a priori. The predicted reflection coefficients and the wave forces are compared with the experimental data of other authors.  相似文献   

14.
在有限水深下1个漂浮在水中的矩形浮子和1个淹没在水下的浮子构成双矩形波能装置模型。基于特征函数展开法求解了线性入射波作用下双矩形浮子波能装置的辐射问题,得出了双矩形浮子辐射速度势的1种新解析式,然后根据Haskind关系由入射势和辐射势来计算波浪激励力,并且采用数值方法对相同算例进行了计算,得到了完全一致的结果,从而证明这种方法是正确的。研究了在不同工况下的波浪激励力和系统的水动力学系数变化的规律。  相似文献   

15.
Based on a two dimensional linear water wave theory, the boundary element method (BEM) is developed and applied to study the heave and the sway problem of a floating rectangular structure in water to finite depth with one side of the boundary is a vertical sidewall and the other boundary is an open boundary. Numerical results for the added mass and radiation damping coefficients are presented. These coefficients are not only depend on the submergence and the width of the structure, but also depend on the clearance between structure and sidewall. Negative added mass and sharp peaks in the damping and added mass coefficients have been found when the clearance with a value close to integral times of half wave length of wave generated by oscillation structure. The important effect of the clearance on the added mass and radiation damping coefficients are discussed in detail. An analytical solution method is also presented. The BEM solution is compared with the analytical solution, and the comparison shows good agreement.  相似文献   

16.
The absorber is known to be vertical axisymmetric for a single-point wave energy converter (WEC). The shape of the wetted surface usually has a great influence on the absorber’s hydrodynamic characteristics which are closely linked with the wave power conversion ability. For complex wetted surface, the hydrodynamic coefficients have been predicted traditionally by hydrodynamic software based on the BEM. However, for a systematic study of various parameters and geometries, they are too multifarious to generate so many models and data grids. This paper examines a semi-analytical method of decomposing the complex axisymmetric boundary into several ring-shaped and stepped surfaces based on the boundary discretization method (BDM) which overcomes the previous difficulties. In such case, by using the linear wave theory based on eigenfunction expansion matching method, the expressions of velocity potential in each domain, the added mass, radiation damping and wave excitation forces of the oscillating absorbers are obtained. The good astringency of the hydrodynamic coefficients and wave forces are obtained for various geometries when the discrete number reaches a certain value. The captured wave power for a same given draught and displacement for various geometries are calculated and compared. Numerical results show that the geometrical shape has great effect on the wave conversion performance of the absorber. For absorbers with the same outer radius and draught or displacement, the cylindrical type shows fantastic wave energy conversion ability at some given frequencies, while in the random sea wave, the parabolic and conical ones have better stabilization and applicability in wave power conversion.  相似文献   

17.
The paper deals with the linearized exciting wave forces and hydrodynamic coefficients of a toroidal body floating in water of finite depth. For the solution of the diffraction and the radiation problems the flow field around the body is subdivided into ring-shaped fluid regions, in each of which axisymmetric eigenfunction expansions for the velocity potential is made. By implementing Galerkin's method the various potential solutions are matched and numerical results concerning the exciting wave forces and the hydrodynamic coefficients in all modes of motion are obtained.  相似文献   

18.
Based on linear water-wave theory, this study investigated the scattering of oblique incident water waves by two unequal surface-piercing thin vertical rigid plates with stepped bottom topography. By using the matched eigenfunction expansion method and a least square approach, the analytical solutions are sought for the established boundary value problem. The effects of the incidence angle, location of step, depth ratio of deep to shallow waters, and column width between two plates, on the reflection coefficients, the horizontal wave forces acting on the two plates, and the mean surface elevation between the two plates, are numerically examined under a variety of wave conditions. The results show that the existence of the stepped bottom between two plates considerably impacts the hydrodynamic performances of the present system. It is found that the effect of stepped bottom on the reflection coefficient of the present two-plate structure is evident only with waves of the low dimensionless frequency. Moreover, the influence of the step location on the hydrodynamic performance of the present two-plate structure is slight if the step is placed in between the two plates.  相似文献   

19.
The hydrodynamic properties of long rigid floating pontoon interacting with linear oblique waves in water of finite arbitrary depth are examined theoretically. The flow is idealized as linearized, velocity potentials are expressed in the form of eigen-function expansions with unknown coefficients. The fluid domain is split into three regions, region (1) wave-ward of the structure, region (2) in the lee of the structure, and region (3) beneath the structure. The different hydrodynamic quantities of interest such as the exciting forces, added mass and damping coefficients, reflection and transmission coefficients were studied for an applicable range of wave/structure parameters. Assuming rigid body motions, dynamic responses of the moored structure is approximately calculated through three equations of motion. Floating pontoons proved to be a convenient alternative for protection from waves in shallow water. The present method of solution was found to be computationally efficient, and results are comparable to those obtained through other techniques.  相似文献   

20.
《Ocean Engineering》2004,31(8-9):1063-1082
An analytical method is presented to analyze the radiation and diffraction of water waves by a rectangular buoy in an infinite fluid domain of finite water depth. Analytical expressions for the radiated potentials and the diffracted potentials are obtained by use of the method of separation of variables. The unknown coefficients in the expressions are determined by use of the eigenfunction expansion matching method. The added masses and damping coefficients for the buoy heaving, swaying and rolling in calm water are obtained by use of the corresponding radiated potentials. Wave excitation forces are calculated by two different approaches, one is by use of the radiated potentials through Haskind’s theorem and the other is by the diffracted potential. It can be seen that the latter approach for wave forces on a rectangular buoy is much simpler than the former. To verify the correctness of the method, two specific examples in the past references are recomputed and the obtained results are in good agreement with those by use of other methods, which shows that the present method is correct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号