首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micropalaeontological investigation of samples from Scott Reef No. 1 has revealed a thick Cainozoic carbonate sequence. Rich planktonic faunas have enabled the identification of Lower Miocene to Oligocene (N6 to P19) and Lower Eocene to Lower Palaeocene intervals (P6 to Pic). The remainder of the succession has been dated on benthonic evidence and spot age‐determinations on isolated planktonic occurrences. The palaeoenvironmental history of the Cainozoic sequence appears to be regressive from a bathyal situation in the Palaeocene through indeterminate marine Eocene, bathyal to inner shelf Oligocene to Middle Miocene, to reefal conditions which have persisted from the Middle Miocene to the present day.  相似文献   

2.
A new interpretation of the Arenig succession in the Aberdaron area is presented based on biostratigraphical correlation. A lithostratigraphy based on section correlation is presented, and three subareas are identified, each with a different stratigraphy. The Sarn Formation comprises the basal ‘flaggy’ sandstone unit in all three areas but is diachronous: in the south it underlies a Moridunian fauna whilst north of the Bryncroes fault it comprises the majority of the Arenig succession and is probably Fennian in age. The Aberdaron Formation is restricted to the south and is dominated by laminated siltstone. The Wǐg Member, a mudstone unit at the base with a Mordunian fauna is found only to the east of the Wǐg–Nefyn fault, whilst the breccio-conglomerate Porth Meudway Member, at the top of the formation, is restricted to the west of the fault and is probably Fennian in age. The Arenig–Llanvirn boundary is approximately marked throughout the area by a tufaceous unit termed the Carw Formation. The new correlations require the repetition of the succession by a previously unrecognized NNE–SSW trending fault. The junction with the Mona Complex west of Aberdaron is considered to be predominantly faulted. The two subareas south of Bryncroes are sufficiently similar to suggest both belonged to the same deepening basin, probably initiated in the Moridunian. The absence of the Aberdaron Formation and the development of contemporary shallower water facies to the north is taken to indicate this area lay on the footwall of a normal fault bounding the basin to the northwest.  相似文献   

3.
A 400-meter-thick volcanic and fine-grained clastic sedimentary succession in Quebrada Doña Ines Chica (26°07′S latitude; 69°20'W longitude) provides a record of Late Triassic deposition in the Atacama region of northern Chile. The strata are conformably overlain by fossiliferous marine limestones and sandstones of Late Triassic to Early Jurassic (Sinemurian) age which contain the oldest ichthyosaur remains known from Central and South America. The clastic succession is interpreted as coastal fluvial deposits, with the overlying limestones representing shelf deposits.  相似文献   

4.
The distribution of the remains of mites in the Lateglacial (Late Weichselian) type section at Usselo (The Netherlands) is presented. The division of the sequence into (sub-)zones, based upon combined palaeo-botanical and palaeoentomological studies, is shown, as well as the approximate age based on 14C determinations. The present habitats of the species are in agreement with the reconstruction of the local vegetational succession Four species of mites, three oribatids and one uropodid, have not previously been recorded as subfossils.  相似文献   

5.
EPMA analyses and K-Ar age determinations were carried out on phengite in pelitic schist from the Sanbagawa metamorphic belt of the Kanto Mountains, Central Japan.

Phengite from the Sanbagawa pelitic schist in the Kanto Mountains generally occurs as aggregates of fine-grained crystals. It is extremely fine-grained in domains adjacent to relatively rigid garnet and albite porphyroblasts. This suggests that deformation-induced grain-size reduction took place in phengite during the ductile deformation accompanying the exhumation of the host schists. EPMA analysis shows that phengite is chemically heterogeneous at the thin-section scale, suggesting that it formed during retrograde metamorphism in restricted equilibrium domains. The retrograde chemical reaction was promoted by the ductile deformation.

K-Ar ages of phengite get younger from the Southern Unit (82 Ma) to the Northern Unit (58 Ma) in the Kanto Mountains. The age range is similar to that in Central Shikoku. The older schists occur in the higher metamorphic grade zone in Central Shikoku and in the lower-grade zone in the Kanto Mountains. The thermal structures in Central Shikoku are inverted, so that the highest-grade zone occurs in the upper or middle parts of the apparent stratigraphic succession. In contrast, the Kanto Mountains have a normal thermal structure: the higher-grade zone is in the lower part of the apparent stratigraphic succession. The different tectonic features in exhumation produced the two contrasting age-temperature-structure relations at the western side of Sanbagawa belt in Central Shikoku and the eastern end of the Sanbagawa belt in the Kanto Mountains that are 800 km distant from each other. Namely, the western Sanbagawa belt in Central Shikoku underwent longer ductile deformation during the exhumation than the eastern Sanbagawa belt in the Kanto Mountains.  相似文献   


6.
The Ediacaran is one of the most important periods on Earth evolution, including the first appearance of soft‐bodied macrofossils, major climatic changes and a supposed rise in free oxygen. In southernmost Brazil, this period is represented by Camaquã Supergroup, including the Bom Jardim Group and the Acampamento Velho Formation, both of which record continental palaeoenvironmental changes in a more than 5000 m thick stratigraphic succession. Age constraints are given by seven Ar‐Ar and U‐Pb determinations on volcanic rocks, which bracket these units between c. 605 and 574 Ma, revealing the best dated and most continuous documented Ediacaran continental succession to date. Depositional systems evolution supports a Phanerozoic‐type glacial context during the last Neoproterozoic glacial event and presents the Picada das Graças Formation (580 ± 3.6 Ma) as the first dated non‐glacial unit coeval to the Gaskiers Formation.  相似文献   

7.
The stratigraphical problem of defining the lower boundary of the Adelaide System is discussed in relation to the geology of several critical areas in the Adelaide Geosyncline and adjacent shelf‐platform.

The Precambrian stratigraphical succession and geological history is outlined with the aid of Rb/Sr age‐determinations made by Dr W. Compston of the Australian National University.

It is concluded that the lower boundary of the Adelaide System is related to the collapse of older basement positive areas on which a regional erosional surface had developed. This surface is defined by the Callanna Beds, the oldest deposits of Willouran age. Willouran sedimentation began some time between 1,340 m.y. and 1,490 m.y. ago. Erosion of the basement rocks probably occupied a major early part of this time interval.  相似文献   

8.
The Adriatic-Dinaridic carbonate platform (ADCP) was one of the largest and relatively well preserved Mesozoic platforms in the Mediterranean region (central Tethys). The peninsula Istria, in the northwestern part of the ADCP, is built up predominantly of shallow-water carbonates of the Middle Jurassic (Dogger) to Eocene age and, to a lesser extent, of Paleogene clastic deposits (flysch and calcareous breccia). This study focuses on a Lower Cretaceous (Barremian to Albian) succession of strata at five localities in western Istria. Stratigraphic determinations are based on identification of nine microfossil assemblages (benthic foraminifera and calcareous algae Dasycladales) and on using their taxa as index fossils. The age of strata with these microfossil assemblages, however, is questionable. Most of the age uncertainties are associated with a regional emersion, which occurred on the ADCP during the Aptian or close to the Aptian-Albian transition. It is unclear what portions of the Upper Aptian and/or Lower Albian are missing along this unconformity. A stable isotope study was conducted on homogenous micritic matrix samples in an attempt to resolve some of these uncertainties. Variations in carbon isotope compositions proved useful for stratigraphic correlation between the examined successions of strata, for improving their age determination, and for relating them to other coeval successions that span an important time interval of major oceanographic changes and carbon-cycle perturbations associated with the Early Aptian oceanic anoxic event (OAE 1a).  相似文献   

9.
Recent geological mapping on the Isle of Wight by the British Geological Survey has shown the ‘Plateau Gravel’ to be a mixture of fluvial, solifluction, pedogenic and marine deposits ranging from pre-Anglian to Holocene age. As part of the resurvey of the island, several new exposures of the ‘Plateau Gravel’ between Newport and Downend were examined. A working gravel pit on St George's Down, near Newport, revealed a succession of flint gravels with an inter-bedded sequence of laminated silts. An upper in situ succession of pre-Anglian fluvial gravels caps the plateau, but a second, probably younger suite of gravel-rich sediments is exposed in a quarry on a topographically lower spur. These overlie in situ Clay-with-flints resting on Upper Cretaceous Chalk. These lower sediments are well exposed and display a complex stratigraphy. They consist predominantly of flint gravel, but include a dipping succession of laminated silts and palaeosols preserved in a hollow or small channel feature, intercalated between two distinct soliflucted cold-stage gravel sheets. Palynological and pedological evidence analysis suggests that these laminated silts and sands were deposited under a temperate climate but with frequent episodes of disruption caused by mass-movement and possibly freeze-thaw. The age of these laminated sediments are not known with any certainty but are likely to date to a temperate interval within the Late Pleistocene. The top of the laminated unit is cut by a heavily cryoturbated horizon presumed to be of Devensian age.  相似文献   

10.
Sediments of Kimmeridgian and Tithonian age are well exposed on the Boulonnais coast of northern France between Equihen and Cap Gris Nez and on the south coast of England at and adjacent to Kimmeridge Bay. Both successions were deposited on a marine shelf and lie within the Subboreal faunal province which enables detailed correlations to be made between them based on ammonite assemblages. They are, however, lithologically markedly different due to their environmental settings: close to a land area in the case of the Boulonnais and within a depositional basin in the case of Kimmeridge. The succession adjacent to the Kimmeridgian-Tithonian boundary exposed in the Boulonnais is highly condensed and laterally variable with more attenuated successions occurring close to the former Anglo-Brabant Massif land area. The boundary occurs at the end of a succession of up to six regressive-transgressive events that onlap the land area. This is in contrast to that at outcrop at Kimmeridge, where the Kimmeridgian-Tithonian boundary is marked by a correlative conformity in an unbroken basinal succession. The cliff and foreshore exposures in the Kimmeridge area provide the only unbroken succession in the Subboreal faunal province of the beds adjacent to the Kimmeridgian-Tithonian boundary.  相似文献   

11.
The nature and field relationships of the Maumtrasna Formation of the Partry Mountains, Co. Mayo, show that the formation underlies the regionally mappable Glenummera Formation, which is of Llanvirn age, and it is laterally equivalent to the Rosroe and Derrylea Formations, also of Llanvirn age. The formation rests unconformably on two different volcanic domains, the basic volcanics of the Bohaun Volcanic Formation to the northwest (of unknown age) and the largely acidic volcanics and sediments of the Tourmakeady Volcanic succession to the southeast (Arenig). It is not the youngest formation in the Ordovician succession of the South Mayo Trough, as was previously thought. This largely conglomeratic unit forms a coarsening upward sequence deposited on alluvial fans which were inundated by a marine transgression at the base of the Glenummera Formation. Clasts in the conglomerates are mainly of granite and porphyry with a minor metamorphic component. The source is interpreted as an arc rooted on a metamorphic basement which lay to the south and east. The suggestion that this area was present day Connemara finds little support. This area may expose some of the ‘hidden’ geology of the Midland Valley of Scotland.  相似文献   

12.
New field mapping, U–Pb zircon geochronology and structural analysis of the southernmost Sardinia metamorphic basement, considered a branch of the Variscan foreland, indicate that it is, in part, allochthonous and was structurally emplaced within the foreland area, rather than being older depositional basement beneath the foreland succession. The Bithia Formation, classically considered part of the ‘Southern Sulcis metamorphic Complex’ (and here termed the Bithia tectonic unit, or BTU), is a greenschist facies metamorphic unit commonly interpreted as Precambrian in age. New geochronology of felsic volcanic rocks in the BTU, however, yield a U–Pb zircon age of 457.01 ± 0.17 Ma (Upper Ordovician). Thus, the depositional age of the unit is younger than the weakly metamorphosed Lower Cambrian rocks of the adjacent foreland succession. New detailed mapping and analysis of the field relationships between the BTU and foreland succession indicates that their contact is a mylonitic shear zone. The metamorphic character, general lithology, and deformational history of the BTU are similar to those of units in the Variscan Nappe Zone located northeast of the foreland area. We reinterpret the BTU as a synformal klippe of material related tectonically to the Variscan Nappe Zone. We infer that it was thrust over and became infolded into the foreland during late stages of the Variscan contractional deformation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
宁城盆地东南缘晚中生代岩石地层序列完整、连续,但该岩石地层序列及其所含生物群的地质年代归属问题还存在争议。含道虎沟生物群岩石地层剖面的发现和实测表明,研究区晚中生代地层序列从下至上由中侏罗世九龙山组—髫髻山组、晚侏罗世土城子组和早白垩世义县组组成。九龙山组—髫髻山组下部以沉积岩系为主,产道虎沟生物群,上部为中、基性火山岩,SHRIMP锆石U-Pb年龄为152Ma和164~165Ma。九龙山组—髫髻山组地层序列既为土城子组平行不整合覆盖,而且二者又同时被早白垩世义县组角度不整合覆盖。含道虎沟生物群的晚中生代岩石地层的地质年代早于热河生物群,为中侏罗世的产物,现暂将其统并为九龙山组—髫髻山组。  相似文献   

14.
Northeastern China contains widely distributed Jurassic terrestrial strata that have yielded many spectacular mammal and pterosaur fossils, in addition to feathered dinosaur fossils and more recent discoveries from Jianchang, particularly from western Liaoning. However, the fossil-bearing stratigraphic succession, regional correlation, and age estimates of the fossils found in Jianchang County and nearby areas have been contentious. Here, we report on the vertebrate fossil-bearing Jurassic stratigraphy from Linglongta, Jianchang County, western Liaoning, including a SHRIMP U-Pb zircon date unambiguously associated with the fossil horizons. The primary goal was to determine the vertebrate fossil-bearing succession. A further aim was to provide age estimations for the fossil-bearing horizon as well as the earliest appearance of feathered dinosaurs, the eutherian–placental clade, and transitional pterosaurs. Field investigations showed that the vertebrate fossil-bearing stratigraphic succession in Jianchang County mainly consists of basal andesites overlain by rhythmic tuffs and tuffaceous lacustrine sediments, with the upper intermediate or acidic lavas interbedded with laminated more or less tuffaceous lacustrine deposits. This sequence correlates well with the Middle Jurassic Lanqi/Tiaojishan Formation in northeastern China. Detailed and accurate field observations showed that the well-preserved vertebrate fossils were buried in either the middle or the upper fine-grained laminated lacustrine deposits. Previous and current SHRIMP U-Pb zircon dates provide an age estimation of 161–159 Myr for the fossil-bearing horizon and vertebrates. This indicates that the earliest appearance of feathered dinosaurs here was more than 159 Myr ago and unquestionably older than Archaeopteryx from Germany, making these the earliest known feathered dinosaurs in the world. Furthermore, the eutherian–placental clade and the known transitional pterosaurs first emerged no later than 161 Myr. The vertebrate assemblage unearthed recently from Linglongta and neighboring areas in Jianchang County belongs to the Daohugou Biota. In addition to feathered dinosaurs, this biota was characterized by mammals, primitive pterosaurs, insects, and plants and was present in Inner Mongolia, western Liaoning, and northern Hebei in northeastern China during the Middle–Late Jurassic.  相似文献   

15.
Coastal cliffs and stream cut sections at Langelandselv on Jameson Land show a 22 m thick sedimentary succession reflecting the development of shallow marine and fluvial environments during the last interglaciation. The shallow marine sediments were deposited in upper shoreface, back-barrier, and delta environments during a rise in the relative sea level from 0 to 18 m. The interglacial succession ends with glaciotectonically dislocated fluvial sand, and is capped by alternating beds of lodgement till and fluvial sand, deposited during the Early Weichselian. The age is determined by palacoceanographic correlation of molluse and foraminifer faunas with isotopic substage 5e in the deep sea record, supported by luminescencs and U/Th dates and amino acid analysis.  相似文献   

16.
In the Iberian Pyrite Belt, volcanic rocks are relatively scarce, accounting for approximately only 25% of the geologic record, with the remaining 75% consisting of sedimentary units. This association is very clear in the host succession to the Neves Corvo massive sulfide deposit in Portugal. The Neves Corvo host succession comprises the products of explosive and effusive rhyolitic eruptions intercalated with mudstone that records a submarine below-wave-base environment and provides precise biostratigraphic age constraints. The first and second volcanic events involved eruptions at local intrabasinal vents. The first event generated thick beds of fiamme breccia that are late Famennian in age. The fiamme were originally pumice clasts produced by explosive eruptions and were subsequently compacted. The second event was the late Strunian (latest Famennian) effusion of rhyolitic lava that was pervasively quench-fragmented. The third and final event is younger than the massive sulfide deposits poorly represented in the mine area and minor compared with the two other events. The integration of biostratigraphic data with the volcanic facies architecture indicates that the Neves Corvo ore deposits are similar in age to the late Strunian rhyolitic lava. Although regionally the Iberian Pyrite Belt is essentially a sedimentary succession, ore formation at Neves Corvo can be closely linked to discrete volcanic events that produced a relatively narrow range of volcanic facies.  相似文献   

17.
Investigation of the Upper Carboniferous to Lower Permian sedimentary strata of central Spitsbergen shows that this highly cyclic rock succession is composed of four long-term transgressive–regressive cycles. These long-term cycles are themselves composed of stacked higher order cycles. Transgressive phases are characterized by increasing accommodation space, and include a basal transgressive part of marked retrogradation of facies belts and thickening-upward component cycles. Regressive phases are characterized by decreasing accommodation space, displayed by progradation of facies belts, overall shallowing and increased restriction of the depositional environment, influx of coarse terrigenous sediments and increasing evidence of exposure and/or non-deposition. The oldest transgressive–regressive sequence identified, Sequence 1, is of Serpukhovian to Bashkirian age and represents a syn-rift sequence. Also composed of syn-rift sediments is the transgressive–regressive Moscovian to mid-Gzhelian-aged Sequence 2. The late Gzhelian to late Asselian Sequence 3 is mainly a post-rift sequence. The youngest sequence, Sequence 4, is of Sakmarian to possible Artinskian age, and is also composed of post-rift sediments. The individual transgressive–regressive cycles are defined as second-order cycles, based on lithological signatures, lateral extent of bounding unconformities, and the actual time period the cycles span. Local tectonic activity is believed to control to some extent the development of short-term cycles in the syn-rift succession. However, cyclicity within the long-term cycles is mainly controlled by eustatic sea-level fluctuations, and therefore enables them to be correlated to other Circum-Arctic regions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
The Vastiansky Kon' is the largest exposure of Quaternary deposits in the Pechora lowland, northern Russia. Morphologically the site belongs to the so-called Markhida Moraine; a complex, east–west trending zone of ice-marginal landforms deposited by the Kara Sea Ice Sheet during the last glaciation. The site exhibits a succession of sediments more than 100 m thick that, according to previous studies, covers the interval from the end of the Elsterian to the beginning of the Holocene. Unfortunately both the strong glaciotectonic deformation of the sedimentary succession and few absolute dates have made the chronological interpretation of the section difficult. The present paper reviews previous studies of the site published in Russian, and presents the results of a reinvestigation focusing on the post-Eemian stratigraphy. A marine Eemian clay more than 8 m thick is overlain erosionally by 20 m of fluvial deposits of Late Eemain or Early Weichselian age. The fluvial succession is overlain by a till and a marine clay, which, according to one interpretation, may represent an Early or Middle Weichselian advance of the Kara Ice Sheet followed by a transgression. The clay shows a transition into 15 m of estuarine and fluvial sediments overlain by more than 12 m of tundra–floodplain deposits. The whole succession has been upthrusted glaciotectonically by the last ice advance, which deposited a more than 12 m thick till on top of the section. Based on a number of subtill radiocarbon age-estimates from the site, in the range 25–32 ka BP, the youngest ice advance is considered to be of late Weichselian age, although a Middle Weichselian age cannot be excluded. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
A middle Pleistocene coarse‐grained canyon fill succession (the Serra Mulara Formation) crops out in the northern sector of the Crotone Basin, a forearc basin located on the Ionian side of the Calabrian Arc and active from the Serravallian to middle Pleistocene. This succession is an example of coarse‐grained submarine canyon fill, which consists of a north‐west to south‐east elongated body (4·25 km long and up to 1·5 km wide) laterally confined by a deep‐water clayey and silty succession and located behind the modern Neto delta (north of Crotone). The thickness of the unit reaches 178 m. The lower part of the canyon fill is dominated by gravelly to sandy density‐flow deposits containing abundant bivalve and gastropod fragments, passing upward into a succession composed of metre‐scale to decimetre‐scale density‐flow deposits forming sandstone–mudstone couplets. Sandstone deposits are mostly structureless and planar‐laminated, whereas the clayey layers record hemipelagic deposition during quieter phases. This succession is overlain by another composed of thicker structureless sandstones alternating with layers of interlaminated mudstones and sandstones, which contain leaf remnants and fresh water ostracods, and are linked directly to river floods. The canyon fill is overlain by gravelly to sandy continental deposits recording a later stage of emergence. Facies analysis, together with micropalaeontological data from the hemipelagic units, suggests that the studied canyon fill records, firstly, a progressive gravel material cut‐off during deposition due to an overall relative sea‐level rise, leading to a progressive increase in the entrapment of sediment in fluvial to shallow‐marine systems, and secondly, a generalized relative sea‐level lowering. This trend probably reflects high‐magnitude glacio‐eustatic changes combined with the regional uplift of the region, ultimately leading to emergence.  相似文献   

20.
In the Ayacucho basin of central Perú the regional Quechua II contractional deformation is bracketed by 40Ar/39Ar isotopic age determinations to a maximum duration of about 300,000 years, and probably less than 150,000 years, centered on 8.7 Ma. The strongly deformed Huanta Formation beneath the Quechua II angular unconformity was deposited during a period of extension that began before 9.05 ± 0.05 Ma. Deposition of a thick succession of alluvial fan deposits interbedded with flows of basaltic andesite in the Tingrayoc Member continued up to about 8.76 ± 0.05 Ma with the later part of the sedimentary record reflected by lacustrine deposits of the Mayocc Member. The upper limit on contractional deformation is constrained by an age of 8.64 ± 0.05 Ma on a unit of tuff near the base of the Puchcas volcanics, which in places was deposited upon near-vertical beds of the Huanta Formation. The Ayacucho Formation was deposited, locally unconformably, upon the Puchcas volcanics beginning slightly before 7.65 ± 0.10 Ma.Extended periods of neutral to tensional stress interrupted by rapid well-developed pulses of contractional deformation demonstrate the episodic behavior of Andean orogeny in Perú. The very short duration for the Quechua II event implies that driving forces for episodic deformation may be related to coupling along the orogen boundaries and strain accumulation and release mechanisms in the continental crust instead of much longer-term variations in the configuration of converging plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号