首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compare deep Magellan spectroscopy of 26 groups at  0.3 ≤ z ≤ 0.55  , selected from the Canadian Network for Observational Cosmology 2 field survey, with a large sample of nearby groups from the 2PIGG catalogue. We find that the fraction of group galaxies with significant [O  ii ]λ3727 emission (≥5 Å) increases strongly with redshift, from ∼29 per cent in 2dFGRS to ∼58 per cent in CNOC2, for all galaxies brighter than  ∼ M *+ 1.75  . This trend is parallel to the evolution of field galaxies, where the equivalent fraction of emission-line galaxies increases from ∼53 to ∼75 per cent. The fraction of emission-line galaxies in groups is lower than in the field, across the full redshift range, indicating that the history of star formation in groups is influenced by their environment. We show that the evolution required to explain the data is inconsistent with a quiescent model of galaxy evolution; instead, discrete events in which galaxies cease forming stars (truncation events) are required. We constrain the probability of truncation ( P trunc) and find that a high value is required in a simple evolutionary scenario neglecting galaxy mergers  ( P trunc≳ 0.3 Gyr−1)  . However, without assuming significant density evolution, P trunc is not required to be larger in groups than in the field, suggesting that the environmental dependence of star formation was embedded at redshifts   z ≳ 0.45  .  相似文献   

2.
We present new R -band photometric data for 447 galaxies, gathered for the 'Streaming Motions of Abell Clusters' (SMAC) project. The data comprise 629 individual measurements of the Fundamental Plane (FP) parameters effective radius ( R e) and surface brightness (〈 μ 〉e), derived from r 1/4-law profile fitting. More than a third of the galaxies were observed more than once. The photometric precision is ∼0.02 mag as judged from comparisons of aperture photometry between repeat observations of galaxies. The combination     which enters into the Fundamental Plane relation, has internal uncertainties of ∼0.008, corresponding to < 2 per cent in estimated distance. Taken individually, the (correlated) internal errors in R e and 〈 μ 〉e are ∼8 per cent and ∼0.12 mag respectively. Comparisons with literature data constrain the external random errors to ≲5 per cent in distance (per observation), which is small in comparison to the ∼20 per cent scatter in the FP. The data will form part of a merged catalogue of FP parameters, presented in a companion paper.  相似文献   

3.
We have selected and analysed the properties of a sample of  2905 Ks < 21.5  galaxies in  ∼131 arcmin2  of the Great Observatories Origins Deep Survey (GOODS) Chandra Deep Field South (CDFS), to obtain further constraints on the evolution of Ks -selected galaxies with respect to the results already obtained in previous studies. We made use of the public deep multiwavelength imaging from the optical B through the infrared (IR) 4.5-μm bands, in conjunction with available spectroscopic and COMBO17 data in the CDFS, to construct an optimized redshift catalogue for our galaxy sample. We computed the Ks -band luminosity function and determined that its characteristic magnitude has a substantial brightening and a decreasing total density from   z = 0  to  〈 z 〉= 2.5  . We also analysed the colours and number density evolution of galaxies with different stellar masses. Within our sample, and in contrast to what is observed for less massive systems, the vast majority (∼85–90 per cent) of the most massive  ( M > 2.5 × 1011 M)  local galaxies appear to be in place before redshift   z ∼ 1  . Around 65–70 per cent of the total assemble between redshifts   z = 1  and 3 and most of them display extremely red colours, suggesting that plausible star formation in these very massive systems should mainly proceed in obscured, short-time-scale bursts. The remaining fraction (up to ∼20 per cent) could be in place at even higher redshifts   z = 3–4  , pushing the first epoch of formation of massive galaxies beyond the limits of current near-IR surveys.  相似文献   

4.
We present spectra for a sample of radio sources from the FIRST survey, and use them to define the form of the redshift distribution of radio sources at mJy levels. We targeted 365 sources and obtained 46 redshifts (13 per cent of the sample). We find that our sample is complete in redshift measurement to R ∼18.6, corresponding to z ∼0.2. Galaxies were assigned spectral types based on emission-line strengths. Early-type galaxies represent the largest subset (45 per cent) of the sample and have redshifts 0.15≲ z ≲0.5; late-type galaxies make up 15 per cent of the sample and have redshifts 0.05≲ z ≲0.2; starbursting galaxies are a small fraction (∼6 per cent), and are very nearby ( z ≲0.05). Some 9 per cent of the population have Seyfert 1/quasar-type spectra, all at z ≳0.8, and 4 per cent are Seyfert 2 type galaxies at intermediate redshifts ( z ∼0.2).
Using our measurements and data from the Phoenix survey (Hopkins et al.), we obtain an estimate for N ( z ) at S 1.4 GHz≥1 mJy and compare this with model predictions. At variance with previous conclusions, we find that the population of starbursting objects makes up ≲5 per cent of the radio population at S ∼1 mJy.  相似文献   

5.
The current methods available to estimate gravitational shear from astronomical images of galaxies introduce systematic errors which can affect the accuracy of weak lensing cosmological constraints. We study the impact of KSB shape measurement bias on the cosmological interpretation of tomographic two-point weak lensing shear statistics.
We use a set of realistic image simulations produced by the Shear Testing Programme (STEP) collaboration to derive shape measurement bias as a function of redshift. We define biased two-point weak lensing statistics and perform a likelihood analysis for two fiducial surveys. We present a derivation of the covariance matrix for tomography in real space and a fitting formula to calibrate it for non-Gaussianity.
We find the biased aperture mass dispersion is reduced by  ∼20 per cent  at redshift ∼1, and has a shallower scaling with redshift. This effect, if ignored in data analyses, biases σ8 and w 0 estimates by a few per cent. The power of tomography is significantly reduced when marginalizing over a range of realistic shape measurement biases. For a Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)-Wide-like survey,  [Ωm, σ8]  confidence regions are degraded by a factor of 2, whereas for a Kilo-Degree Survey (KIDS)-like survey the factor is 3.5. Our results are strictly valid only for KSB methods, but they demonstrate the need to marginalize over a redshift-dependent shape measurement bias in all future cosmological analyses.  相似文献   

6.
We determine the binary star fraction as a function of radius in NGC 1818, a young rich cluster in the Large Magellanic Cloud, using Hubble Space Telescope images in bands F336W (∼ U ) and F555W (∼ V ). Our sample includes binaries with M primary ∼ 2–5.5 M and M secondary ≳ 0.7 Mprimary. The binary fraction increases towards the cluster centre, from ∼ 20 ± 5 per cent in the outer parts, to ∼ 35 ± 5 per cent inside the core. This increase is consistent with dynamical mass segregation and need not be primordial. We compare our results with expectations from N -body models, and discuss the implications for the formation and early evolution of such clusters.  相似文献   

7.
We calculate the expected amplitude of the dipole and higher spherical harmonics in the angular distribution of radio galaxies. The median redshift of radio sources in existing catalogues is z  ∼ 1, which allows us to study large-scale structure on scales between those accessible to present optical and infrared surveys, and that of the cosmic microwave background (CMB). The dipole is a result of two effects which turn out to be of comparable magnitude: (i) our motion with respect to the CMB, and (ii) large-scale structure, parametrized here by a family of cold dark matter power-spectra. We make specific predictions for the Green Bank 1987 (87GB) and Parkes–MIT–NRAO (PMN) catalogues, which in our combined catalogue include ∼ 40 000 sources brighter than 50 mJy at 4.85 GHz, over about 70 per cent of the sky. For these relatively sparse catalogues both the motion and large-scale structure dipole effects are expected to be smaller than the Poisson shot noise. However, we detect dipole and higher harmonics in the combined 87GB–PMNraw catalogue which are far larger than expected. We attribute this to a 2 per cent flux mismatch between the two catalogues. Ad hoc corrections made in an effort to match the catalogues may suggest a marginal detection of a dipole. To detect a dipole and higher harmonics unambiguously, a catalogue with full sky coverage and ∼ 106 sources is required. We also investigate the existence and extent of the supergalactic plane in the above catalogues. In a strip of ± 10° of the standard supergalactic equator, we find a 3 σ detection in PMNraw, but only 1 σ in 87 GBraw. We briefly discuss the implications of ongoing surveys such as FIRST and NVSS and follow-up redshift surveys.  相似文献   

8.
Active galactic nuclei (AGN) produce a dominant fraction  ( F AGN∼ 80 per cent)  of the soft X-ray background (SXB) at photon energies  0.5 < E < 2 keV  . If dust pervaded throughout the intergalactic medium, its scattering opacity would have produced diffuse X-ray haloes around AGN. Taking account of known galaxies and galaxy clusters, only a fraction   F halo≲ 10 per cent  of the SXB can be in the form of diffuse X-ray haloes around AGN. We therefore limit the intergalactic opacity to optical/infrared photons from large dust grains, with radii in the range   a = 0.2–2.0 μm  , to a level  τGD≲ 0.15( F halo/10 per cent)(FAGN/80 per cent)−1  to a redshift   z ∼ 1  . Our results are only weakly dependent on the grain size distribution in this size range or the redshift evolution of the intergalactic dust. Stacking X-ray images of AGN can be used to improve our constraints and diminish the importance of dust as a source of systematic uncertainty for future supernova surveys which aim to improve the precision on measuring the redshift evolution of the dark energy equation-of-state.  相似文献   

9.
We describe the construction of MegaZ-LRG, a photometric redshift catalogue of over one million luminous red galaxies (LRGs) in the redshift range  0.4 < z < 0.7  with limiting magnitude   i < 20  . The catalogue is selected from the imaging data of the Sloan Digital Sky Survey (SDSS) Data Release 4. The 2dF-SDSS LRG and Quasar (2SLAQ) spectroscopic redshift catalogue of 13 000 intermediate-redshift LRGs provides a photometric redshift training set, allowing use of ann z, a neural network-based photometric-redshift estimator. The rms photometric redshift accuracy obtained for an evaluation set selected from the 2SLAQ sample is  σ z = 0.049  averaged over all galaxies, and  σ z = 0.040  for a brighter subsample  ( i < 19.0)  . The catalogue is expected to contain ∼5 per cent stellar contamination. The ann z code is used to compute a refined star/galaxy probability based on a range of photometric parameters; this allows the contamination fraction to be reduced to 2 per cent with negligible loss of genuine galaxies. The MegaZ-LRG catalogue is publicly available on the World Wide Web from http://www.2slaq.info .  相似文献   

10.
We discuss the constraints that future photometric and spectroscopic redshift surveys can put on dark energy through the baryon oscillations of the power spectrum. We model the dark energy either with a perfect fluid or a scalar field and take into account the information contained in the linear growth function. We show that the growth function helps to break the degeneracy in the dark energy parameters and reduce the errors on   w 0, w 1  roughly by 30 per cent, making more appealing multicolour surveys based on photometric redshifts. We find that a 200-deg2 spectroscopic survey reaching   z ≈ 3  can constrain   w 0, w 1  to within  Δ w 0= 0.21, Δ w 1= 0.26  , to  Δ w 0= 0.39, Δ w 1= 0.54  using photometric redshifts with an absolute uncertainty of 0.02, and to  Δ w 0= 0.43, Δ w 1= 0.66  with an uncertainty of 0.04. In the scalar field case, we show that the slope n of the inverse power-law potential for dark energy can be constrained to  Δ n = 0.26  (spectroscopic redshifts) or  Δ n = 0.40  (photometric redshifts), i.e. better than with future ground-based supernovae surveys or cosmic microwave background data.  相似文献   

11.
In this, the second in a series of three papers concerning the SuperCOSMOS Sky Survey, we describe the methods for image detection, parametrization, classification and photometry. We demonstrate the internal and external accuracy of our object parameters. Using examples from the first release of data, the South Galactic Cap survey, we show that our image detection completeness is close to 100 per cent to within ∼1.5 mag of the nominal plate limits. We show that for the B J survey data, the image classification is externally > 99 per cent reliable to B J∼19.5 . Internally, the image classification is reliable at a level of > 90 per cent to B J∼21 , R ∼19 . The photometric accuracy of our data is typically ∼0.3 mag with respect to external data for m >15 . Internally, the relative photometric accuracy in restricted position and magnitude ranges can be as accurate as ∼5 per cent for well-exposed stellar images. Colours are externally accurate to σ B − R , R − I ∼0.07 at B J∼16.5 , rising to σ B − R , R − I ∼0.16 at B J∼20 .  相似文献   

12.
We present results from the first high-resolution hydrodynamical simulations of non-Gaussian cosmological models. We focus on the statistical properties of the transmitted Lyman-α flux in the high-redshift intergalactic medium. Imprints of non-Gaussianity are present and are larger at high redshifts. Differences larger than 20 per cent at   z > 3  in the flux probability distribution function for high-transmissivity regions (voids) are expected for values of the non-linearity parameter   f NL=±100  when compared to a standard Λ cold dark matter cosmology with   f NL= 0  . We also investigate the one-dimensional flux bispectrum: at the largest scales (corresponding to tens of Mpc), we expect deviations in the flux bispectrum up to 20 per cent at   z ∼ 4  (for   f NL=±100  ), significantly larger than deviations of ∼3 per cent in the flux power spectrum. We briefly discuss possible systematic errors that can contaminate the signal. Although challenging, a detection of non-Gaussianities in the interesting regime of scales and redshifts probed by the Lyman-α forest could be possible with future data sets.  相似文献   

13.
We present the results of a continuing survey to detect Lyα emitting galaxies at redshifts   z ∼ 9  : the ' z equals nine' (ZEN) survey. We have obtained deep VLT Infrared Spectrometer and Array Camera observations in the narrow J -band filter NB119 directed towards three massive lensing clusters: Abell clusters 1689, 1835 and 114. The foreground clusters provide a magnified view of the distant Universe and permit a sensitive test for the presence of very high redshift galaxies. We search for   z ∼ 9 Lyα  emitting galaxies displaying a significant narrow-band excess relative to accompanying J -band observations that remain undetected in Hubble Space Telescope ( HST )/Advanced Camera for Surveys (ACS) optical images of each field. No sources consistent with this criterion are detected above the unlensed 90 per cent point-source flux limit of the narrow-band image,   F NB= 3.7 × 10−18 erg s−1 cm−2  . To date, the total coverage of the ZEN survey has sampled a volume at   z ∼ 9  of approximately 1700 comoving Mpc3 to a Lyα emission luminosity of  1043 erg s−1  . We conclude by considering the prospects for detecting   z ∼ 9 Lyα  emitting galaxies in light of both observed galaxy properties at   z < 7  and simulated populations at   z > 7  .  相似文献   

14.
We present the Lensed Mock Map Facility ( lemomaf ), a tool designed to perform mock weak-lensing measurements on numerically simulated chunks of the Universe. Coupling N -body simulations to a semi-analytical model of galaxy formation, lemomaf can create realistic lensed images and mock catalogues of galaxies, at wavelengths ranging from the ultraviolet to the submillimetre. To demonstrate the power of such a tool, we compute predictions of the source–lens clustering (SLC) effect on the convergence statistics, and quantify the impact of weak lensing on galaxy counts in two different filters. We find that the SLC effect skews the probability density function of the convergence towards low values, with an intensity which strongly depends on the redshift distribution of galaxies. On the other hand, the degree of enhancement or depletion in galaxy counts due to weak lensing is independent of the SLC effect. We discuss the impact on the two-point shear statistics to be measured by future missions like SNAP and LSST . The SLC effect would bias the estimation of σ8 from two-point statistics up to 5 per cent for a narrow redshift distribution of mean   z ∼ 0.5  , and up to 2 per cent in small angular scales for a redshift distribution of mean   z ∼ 1.5  . We conclude that accurate photometric redshifts for individual galaxies are necessary in order to quantify and isolate the SLC effect.  相似文献   

15.
We have conducted a submillimetre mapping survey of faint, gravitationally lensed sources, where we have targeted 12 galaxy clusters and additionally the New Technology Telescope (NTT) Deep Field. The total area surveyed is 71.5 arcmin2 in the image plane; correcting for gravitational lensing, the total area surveyed is 40 arcmin2 in the source plane for a typical source redshift z ≈ 2.5. In the deepest maps, an image plane depth of 1σ rms ∼0.8 mJy is reached. This survey is the largest survey to date to reach such depths. In total 59 sources were detected, including three multiply imaged sources. The gravitational lensing makes it possible to detect sources with flux density below the blank field confusion limit. The lensing-corrected fluxes range from 0.11 to 19 mJy. After correcting for multiplicity, there are 10 sources with fluxes <2 mJy of which seven have submJy fluxes, doubling the number of such sources known. Number counts are determined below the confusion limit. At 1 mJy, the integrated number count is  ∼104 deg−2  , and at 0.5 mJy it is  ∼2 × 104 deg−2  . Based on the number counts, at a source plan flux limit of 0.1 mJy, essentially all of the 850-μm background emission has been resolved. The dominant contribution (>50 per cent) to the integrated background arises from sources with fluxes S 850 between 0.4 and 2.5 mJy, while the bright sources S 850 > 6 mJy contribute only 10 per cent.  相似文献   

16.
We consider a situation where the density and peculiar velocities in real space are linear, and we calculate ξ s , the two-point correlation function in redshift space, incorporating all non-linear effects which arise as a consequence of the map from real to redshift space. Our result is non-perturbative and it includes the effects of possible multi-streaming in redshift space. We find that the deviations from the predictions of the linear redshift distortion analysis increase for the higher spherical harmonics of ξ s . While the deviations are insignificant for the monopole ξ 0, the hexadecapole ξ 4 exhibits large deviations from the linear predictions. For a COBE normalized     ,     cold dark matter (CDM) power spectrum, our results for ξ 4 deviate from the linear predictions by a factor of two on the scale of ∼10  h −1 Mpc. The deviations from the linear predictions depend separately on f (Ω) and b . This holds the possibility of removing the degeneracy that exists between these two parameters in the linear analysis of redshift surveys which yields only     .
We also show that the commonly used phenomenological model, where the non-linear redshift two-point correlation function is calculated by convolving the linear redshift correlation function with an isotropic pair velocity distribution function, is a limiting case of our result.  相似文献   

17.
We use high-quality echelle spectra of 24 quasi-stellar objects to provide a calibrated measurement of the total amount of Lyα forest absorption (DA) over the redshift range  2.2 < z < 3.2  . Our measurement of DA excludes absorption from metal lines or the Lyα lines of Lyman-limit systems and damped Lyα systems. We use artificial spectra with realistic flux calibration errors to show that we are able to place continuum levels that are accurate to better than 1 per cent. When we combine our results with our previous results between  1.6 < z < 2.2  , we find that the redshift evolution of DA is well described over  1.6 < z < 3.2  as   A (1 + z )γ  , where   A = 0.0062  and  γ= 2.75  . We detect no significant deviations from a smooth power-law evolution over the redshift range studied. We find less H  i absorption than expected at   z = 3  , implying that the ultraviolet background is  ∼40  per cent higher than expected. Our data appears to be consistent with an H  i ionization rate of  Γ∼ 1.4 × 10−12 s−1  .  相似文献   

18.
We present a direct detection of the growth of large-scale structure, using weak gravitational lensing and photometric redshift data from the COMBO-17 survey. We use deep R -band imaging of two  0.5 × 0.5 deg2  fields, affording shear estimates for over 52 000 galaxies; we combine these with photometric redshift estimates from our 17-band survey, in order to obtain a 3D shear field. We find theoretical models for evolving matter power spectra and correlation functions, and fit the corresponding shear correlation functions to the data as a function of redshift. We detect the evolution of the power at the 4.7σ level given reasonable priors, and measure the rate of evolution for  0 < z < 1  . We also fit correlation functions to our 3D data as a function of cosmological parameters σ8 and  ΩΛ  . We find joint constraints on  ΩΛ  and σ8, demonstrating an improvement in accuracy by ≃40 per cent over that available from 2D weak lensing for the same area.  相似文献   

19.
We analyse near-infrared Hubble Space Telescope ( HST )/Near-Infrared Camera and Multi-Object Spectrometer F 110 W ( J ) and F 160 W ( H ) band photometry of a sample of 27 i '-drop candidate   z ≃ 6  galaxies in the central region of the HST /Advanced Camera for Surveys Ultra Deep Field . The infrared colours of the 20 objects not affected by near neighbours are consistent with a high-redshift interpretation. This suggests that the low-redshift contamination of this i '-drop sample is smaller than that observed at brighter magnitudes, where values of 10–40 per cent have been reported. The J – H colours are consistent with a slope flat in   fν ( fλ ∝λ−2)  , as would be expected for an unreddened starburst. However, there is evidence for a marginally bluer spectral slope  ( fλ ∝λ−2.2)  , which is perhaps indicative of an extremely young starburst (∼10 Myr old) or a top heavy initial mass function and little dust. The low levels of contamination, median photometric redshift of   z ∼ 6.0  and blue spectral slope, inferred using the near-infrared data, support the validity of the assumptions in our earlier work in estimating the star formation rates, and that the majority of the i -drop candidates galaxies lie at   z ∼ 6  .  相似文献   

20.
We present the rest-frame optical and infrared colours of a complete sample of  1114 z < 0.3  galaxies from the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Legacy Survey and the Sloan Digital Sky Survey (SDSS). We discuss the optical and infrared colours of our sample and analyse in detail the contribution of dusty star-forming galaxies and active galactic nuclei (AGN) to optically selected red sequence galaxies.
We propose that the optical  ( g − r )  colour and infrared  log( L 24/ L 3.6)  colour of galaxies in our sample are determined primarily by a bulge-to-disc ratio. The  ( g − r )  colour is found to be sensitive to the bulge-to-disc ratio for disc-dominated galaxies, whereas the  log( L 24/ L 3.6)  colour is more sensitive for bulge-dominated systems.
We identify ∼18 per cent (195 sources) of our sample as having red optical colours and infrared excess. Typically, the infrared luminosities of these galaxies are found to be at the high end of star-forming galaxies with blue optical colours. Using emission-line diagnostic diagrams, 78 are found to have an AGN contribution and 117 are identified as star-forming systems. The red  ( g − r )  colour of the star-forming galaxies could be explained by extinction. However, their high optical luminosities cannot. We conclude that they have a significant bulge component.
The number densities of optically red star-forming galaxies are found to correspond to ∼13 per cent of the total number density of our sample. In addition, these systems contribute ∼13 per cent of the total optical luminosity density, and 28 per cent of the total infrared luminosity density of our SWIRE/SDSS sample. These objects may reduce the need for 'dry mergers'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号