首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A climatology of Southern Hemisphere anticyclones   总被引:1,自引:0,他引:1  
A climatology of anticyclones generated by an objective automatic scheme applied to 15 years of once-daily Australian Bureau of Meteorology hemispheric analyses is presented. Contour maps of the anticyclone system density, positions of formation and dissipation together with other statistics are shown. The distribution of anticyclones through the hemisphere was found to be dominated by a mid latitude belt of high density, located in the band 25–42°S, typically 24° south of the time-mean subtropical ridge. Within this band the anticyclone density displays considerable structure with greater system numbers over the eastern parts of the three subtropical ocean basins in the vicinity of the three subtropical ocean time-mean anticyclones. During winter the system density displays a bifurcation in the New Zealand sector, with the highest density along the 30 and 45°S latitude bands. The movement of systems in the subtropical ocean basins was found to be in a general easterly direction with a weak equatorwards component, the transport of systems closely following the orientation of the belt of highest system density. In the vicinity of the African and South American continents, movement was more complex with east-south-east motion upstream, and east-north-east movement downstream, the net transport being such as to encourage a general steering of systems around the continental land masses more particularly during the warmer seasons. To highlight the dynamic role played by these systems and their cyclonic counterparts, we present a limited investigation of the response of Southern Hemisphere synoptic systems to variations of the broader atmospheric system and compare these findings to those obtained by more traditional analysis techniques.  相似文献   

4.

2015年5月1—2日由江淮气旋引发了一次江淮和江南暴雨天气过程, 利用常规地面、高空观测、6 h一次的NCEP 1°×1°再分析场、星下点分辨率为5 km的FY-2E水汽云图等资料, 重点分析了江淮气旋的生成环境、结构特征、演变过程及东移原因, 在此基础上分析了此次暴雨过程的成因。结果表明:(1)这次江淮气旋生成于500 hPa西风槽前, 西南涡沿暖切变线东移、地面冷锋进入低压倒槽的顶端; 此后该气旋向东移动, 但强度逐渐减弱。(2)这次江淮气旋表现为中低层浅薄系统, 温度锋区弱, 与经典的深厚温带气旋结构不同。江淮气旋生成时, 正相对涡度区随高度向西倾斜; 当高低层正相对涡度区逐渐垂直重合时, 江淮气旋减弱。(3)暴雨的产生与低空急流输送的丰富水汽、500 hPa高空槽前中低层低涡、切变线、气旋等引起的强上升运动有关; 暴雨区南北两支次级环流圈的存在有利于强上升运动的维持; 地形抬升作用使得降水加强。(4)地面气旋中心总是沿中低层暖平流区域及其下游高低层微差涡度平流较大区域移动, 移向对流层中层上升运动区。

  相似文献   

5.
6.
7.
8.
In contrast to the common opinion, hurricane winds in extratropical cyclones are a quite frequent phenomenon followed by huge damage, especially in densely populated areas. This phenomenon has been poorly studied and is hardly predictable so far. The features of hurricane winds in extratropical cyclones, and the similarity and difference in their structure as compared to those in tropical cyclones are revealed.  相似文献   

9.
10.
11.
Ocean feedback to tropical cyclones: climatology and processes   总被引:1,自引:0,他引:1  
This study presents the first multidecadal and coupled regional simulation of cyclonic activity in the South Pacific. The long-term integration of state-of the art models provides reliable statistics, missing in usual event studies, of air–sea coupling processes controlling tropical cyclone (TC) intensity. The coupling effect is analyzed through comparison of the coupled model with a companion forced experiment. Cyclogenesis patterns in the coupled model are closer to observations with reduced cyclogenesis in the Coral Sea. This provides novel evidence of air–sea coupling impacting not only intensity but also spatial cyclogenesis distribution. Storm-induced cooling and consequent negative feedback is stronger for regions of shallow mixed layers and thin or absent barrier layers as in the Coral Sea. The statistical effect of oceanic mesoscale eddies on TC intensity (crossing over them 20 % of the time) is also evidenced. Anticyclonic eddies provide an insulating effect against storm-induced upwelling and mixing and appear to reduce sea surface temperature (SST) cooling. Cyclonic eddies on the contrary tend to promote strong cooling, particularly through storm-induced upwelling. Air–sea coupling is shown to have a significant role on the intensification process but the sensitivity of TCs to SST cooling is nonlinear and generally lower than predicted by thermodynamic theories: about 15 rather than over 30 hPa °C?1 and only for strong cooling. The reason is that the cooling effect is not instantaneous but accumulated over time within the TC inner-core. These results thus contradict the classical evaporation-wind feedback process as being essential to intensification and rather emphasize the role of macro-scale dynamics.  相似文献   

12.
Using monthly data from the European Center for Medium-Range Weather Forecast 40-year reanalysis (ERA-40), we have revealed a teleconnection pattern over the extratropical Northern Hemisphere through the empirical orthogonal function analysis of summer upper-tropospheric eddy temperature. When temperature is higher (lower) over the Eastern Hemisphere (EH), it is lower (higher) over the Western Hemisphere (WH). The teleconnection manifested by this out-of-phase relationship is referred to as the Asian–Pacific oscillation (APO). The values of an index measuring the teleconnection are high before 1976 and low afterwards, showing a downward trend of the stationary wave at a rate of 4% per year during 1958–2001. The index also exhibits apparent interannual variations. When the APO index is high, anomalous upper-tropospheric highs (lows) appear over EH (WH). The formation of APO is likely associated with a zonal vertical circulation in the troposphere. Unforced control runs of both the NCAR Community Atmospheric Model version 3 and the Community Climate System Model version 3 capture the major characteristics of the teleconnection pattern and its associated vertical structure. The APO variability is closely associated with sea surface temperature (SST) in the Pacific, with a significantly positive correlation between APO and SST in the extratropical North Pacific and a significantly negative correlation in the tropical eastern Pacific. Sensitivity experiments show that the anomalies of SST over these two regions influence the APO intensity, but their effects are opposite to each other. Compared to the observation, the positive and negative anomalous centers of the extratropical tropospheric temperature triggered by the SST anomalies have a smaller spatial scale.  相似文献   

13.
利用常规和加密气象观测、NCEP再分析、云图等资料,对2010—2019年春季影响大连的温带气旋特征及爆发性气旋造成的极端天气的物理机制进行分析。结果表明:春季进入到渤海、黄海北部的气旋平均每月2.4个;气旋一般先进入黄海,进入黄海和经渤海进入黄海的温带气旋总计有84.5%进入黄海北部,且春季进入黄渤海的气旋73%会给大连地区带来大风或降水天气,影响大连东部沿海的几率远高于其他地区;产生较强灾害性天气的爆发性气旋多发生在春季,路径基本都是由西南向东北方向移动。爆发性气旋主要是因为温带气旋经过黄渤海后短时间快速降压,到大连陆地发生爆发性发展,这种温带气旋的发展一般从低层开始,具有较强的锋区和斜压性,爆发阶段位于正涡度平流最大的高空急流出口区,对应低空位于低空急流左前方辐合区。较强的冷、暖温度平流是造成极端降水和大风天气的主要因素,暴雨的形成主要是温带气旋带来的暖湿气流持续输送,并伴有较强上升运动促使的水汽垂直输送,整层水汽充沛;当低空急流发展和冷、暖空气交绥时,出现了在高湿、高温的湿斜压锋区上的强降水;而北路强冷空气与黄、渤海上爆发性发展的温带气旋形成极强气压梯度,是出现极端大风的主要原因。  相似文献   

14.
 An ensemble of twenty-three 14-year experiments conducted with the ECHAM-4 GCM has been examined to test the model's capability to simulate the principal modes of interannual variability. The integrations were performed under specified monthly SST between 1979–1993. The analysis was focused on the Southern Hemisphere (SH) extratropics. Empirical orthogonal functions analysis (EOF) using seasonal anomaly fields has been performed to isolate the principal modes that dominate the southern extratropical variability at the interannual time scale. Leading patterns of 500 hPa geopotential height (z500) have been compared with those estimated from the ECMWF re-analysis dataset. The model is able to adequately reproduce the spatial pattern of the annular mode, but it represents the temporal variations of the oscillation less satisfactorily. The model simulation of the Pacific South American (PSA) pattern is better, both in the shape of the pattern and in the temporal evolution. To verify if the capability of the model to adequately simulate the temporal oscillation of the propagating patterns is related to the increased influence of the tropical external forcing, covarying SST-atmospheric modes have been identified by singular value decomposition (SVD). In winter (July-August-September, JAS) the tropical SST variability is highly correlated with the ENSO mode. In summer (January-February-March, JFM) the strength of the teleconnections is related to strong westerly anomalies, disrupted by a meridional out of phase relation near to South America. The large size of the ensemble was exploited by comparing the time-varying model spread and degrees of freedom of the simulated extratropical circulation. Results show that when the extratropical circulation has a few degrees of freedom, the reproducibility is relatively low and the ensemble is governed by a fairly robust zonally symmetric structure of dispersion. Received: 9 May 2000 / Accepted: 30 January 2001  相似文献   

15.
There is little doubt that between now and 2050 Earth faces global warming and other changes in climate unprecedented in magnitude since the end of the last glaciation some 10 000 years ago. Predicting the exact nature of that change is, however, difficult. Arguments from palaeoclimatic analogues, comparisons of recent warm versus cool years, physical reasoning and computer simulations are all subject to error and uncertainty. This is more so in the relatively less well understood climate system of the Southern Hemisphere, and at the local and regional scale, than in the Northern Hemisphere and at a zonally averaged scale. Nevertheless some broad features can be described with some confidence, and we can at least identify some of the major uncertainties and processes which we need to understand better.Increased poleward penetration of the subtropical monsoonal regimes is likely, and tropical cyclones may also occur at higher latitudes than at present. The role of the oceans, especially at high southern latitudes and in the tropics, and effects which may change with time as greenhouse gas concentrations gradually increase (transient effects) are particularly important and uncertain in the Southern Hemisphere.We know enough to declare the urgency of slowing down and eventually limiting the greenhouse effect. However, more research is needed to guide decision makers and planners at the local and regional level as they try to cope with those climatic changes which are unavoidable. Regional cooperation is essential to make the best use of the research and planning facilities available.  相似文献   

16.
爆发性与非爆发性海洋温带气旋   总被引:1,自引:0,他引:1  
本文选取分别代表爆发性发展(1983年3月)和非爆发性发展(1982年3月)的两个海洋温带气旋个例,对它们进行了比较研究。结果表明,无论是在基本要素场,还是诊断出的物理量场,两者都表现出明显的差异。其中,涡度、位势涡度、扰动动能和总动能之间的差别更大。在爆发阶段,前3项的增加量爆发性气旋是非爆发性气旋的2—4倍,而总动能的增大值两者悬殊更大,比值为13.6:1。  相似文献   

17.
Average long-term fields of geopotential gradients in the middle and upper troposphere and temperature gradients and geopotential Laplacian in the middle troposphere in the Northern Hemisphere in winter are analyzed. Based on the analysis of the distribution of the maximum values of gradients, the average long-term position of upper-level frontal zones and their axial lines was determined. Their spatial distribution is analyzed from the point of view of interaction between thermobaric fields over different regions of the globe. Average long-term parameters of upper-level frontal zones in the middle troposphere are presented. Average long-term fields of wind speed in the middle and upper troposphere are investigated. It is demonstrated that the zones of the maximum values of wind speed agree well with the position of separated upper-level frontal zones.  相似文献   

18.
中国大陆上变性加强热带气旋的诊断分析   总被引:1,自引:1,他引:0  
李侃  徐海明 《气象科学》2011,31(6):677-686
利用1979-2007年日本气象厅热带气旋年鉴资料,对在中国大陆上发生变性的热带气旋进行了统计分析,结果表明:29 a间中国大陆上发生变性的热带气旋共有16个,占登陆中国热带气旋总数的8.56%,其中8个变性后加强.利用日本JRA-25再分析资料诊断分析了这8个变性加强热带气旋的湿位涡垂直分布特征以及影响热带气旋变性发...  相似文献   

19.
Extra-tropical cyclones strongly influence weather and climate in mid-latitudes and any future changes may have large impacts on the local scale. In this study Northern Hemisphere storms are analysed in ensembles of time-slice experiments carried out with an atmosphere only model with present day and future anthropogenic emissions. The present day experiment is forced by observed sea-surface temperature and sea-ice. The sea-surface temperatures and sea-ice for the future experiment are derived by adding anomalies, from parallel but lower resolution coupled model experiments, to the observed data. The storms in the present day simulation compare fairly well with observations in all seasons but some errors remain. In the future simulations there is some evidence of a poleward shift in the storm tracks in some seasons and regions. There are fewer cyclones in the Northern Hemisphere in winter and spring. The northeast end of the North Atlantic storm track is shifted south in winter giving more storms and increased frequency of strong winds over the British Isles. This shift is related to an increase in baroclinicity and a southward shift of the jet that occurs as a response to a minimum in ocean warming in the central North Atlantic. An increase in the frequency of storms over the UK is likely to cause enhanced levels of wind and flood damage. These results concur with those from some other models, however, large uncertainties remain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号