首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地下隧道-土体系地震反应分析的有限元与无限元耦合法   总被引:9,自引:1,他引:8  
本文采用有限元-无限元耦合法进行地下隧道-土相作用分析,阐述了有无限与无限元耦合模式的基本原理,耦合分析方法具有精度高,省机时的特点。  相似文献   

2.
基于ANSYS的木梁有限元静力弹塑性分析   总被引:1,自引:0,他引:1  
采用大型有限元软件ANSYS10.0对单调竖向荷载作用下木梁进行了线弹性和弹塑性计算分析。并将有限元计算结果与材料力学计算结果进行了对比,验证了建模的正确性。分析了木梁的应力和应变变化规律,为进一步采用ANSYS软件分析木柱、梁一土坯组合墙体的抗震性能奠定了基础。  相似文献   

3.
Ground vibrations induced by railway traffic at grade and in tunnels are often studied by means of two-and-half dimensional (2.5D) models that are based on a Fourier transform of the coordinate in the longitudinal direction of the track. In this paper, the need for 2.5D coupled finite element-boundary element models is demonstrated in two cases where the prediction of railway induced vibrations is considered. A recently proposed novel 2.5D methodology is used where the finite element method is combined with a boundary element method, based on a regularized boundary integral equation. In the formulation of the boundary integral equation, Green's functions of a layered elastic halfspace are used, so that no discretization of the free surface or the layer interfaces is required. In the first case, two alternative models for a ballasted track on an embankment are compared. In the first model, the ballast and the embankment are modelled as a continuum using 2.5D solid elements, whereas a simplified beam representation is adopted in the second model. The free field vibrations predicted by both models are compared to those measured during a passage of the TGVA at a site in Reugny (France). A very large difference is found for the free field response of both models that is due to the fact that the deformation of the cross section of the embankment is disregarded in the simplified representation. In the second case, the track and free field response due to a harmonic load in a tunnel embedded in a layered halfspace are considered. A simplified methodology based on the use of the full space Green's function in the tunnel–soil interaction problem is investigated. It is shown that the rigorous finite element-boundary element method is required when the distance between the tunnel and the free surface and the layer interfaces of the halfspace is small compared to the wavelength in the soil.  相似文献   

4.
A method for the dynamic finite element analysis of a non-axisymmetric soil model with an axisymmetric boundary is presented. In the non-axisymmetric soil domain an arbitrary discretization with three-dimensional isoparametric solid elements is used. At the boundary a transmitting element is arranged. It is based on the semi-analytical element of Waas and Kausel. The transformation of the stiffness matrix of the Waas/Kausel element with cyclic symmetric displacements to general displacement fields is presented. For earthquake excitation the forces acting on the discretized domain are given. The method is illustrated by the dynamic analysis of an embedded box-type building. The distribution and magnitude of significant section forces are discussed.  相似文献   

5.
In this paper, a numerical method for the modeling of shallow waters interacting with slender elastic structures is presented. The fluid domain is modeled through the lattice Boltzmann method, while the solid domain is idealized by corotational beam finite elements undergoing large displacements. Structure dynamics is predicted by using the time discontinuous Galerkin method and the fluid–structure interface conditions are handled by the Immersed Boundary method. An explicit coupling strategy to combine the adopted numerical methods is proposed and its effectiveness is tested by computing the error in terms of the energy that is artificially introduced at the fluid–solid interface.  相似文献   

6.
Groundwater contaminant transport processes are usually simulated by the finite difference (FDM) or finite element methods (FEM). However, they are susceptible to numerical dispersion for advection‐dominated transport. In this study, a numerical dispersion‐free coupled flow and transport model is developed by combining the analytic element method (AEM) with random walk particle tracking (RWPT). As AEM produces continuous velocity distribution over the entire aquifer domain, it is more suitable for RWPT than FDM/finite element methods. Using the AEM solutions, RWPT tracks all the particles in a vectorized manner, thereby improving the computational efficiency. The present model performs a convolution integral of the response of an impulse contaminant injection to generate concentration distributions due to a permanent contaminant source. The RWPT model is validated with an available analytical solution and compared to an FDM solution, the RWPT model more accurately replicates the analytical solution. Further, the coupled AEM‐RWPT model has been applied to simulate the flow and transport in hypothetical and field aquifer problems. The results are compared with the FDM solutions and found to be satisfactory. The results demonstrate the efficacy of the proposed method.  相似文献   

7.
A new finite element code using the Adaptively Shifted Integration (ASI) technique with a linear Timoshenko beam element is applied to the seismic collapse analysis of reinforced concrete (RC) framed structures. This technique can express member fracture as a plastic hinge located at either end of an element with simultaneous release of the resultant forces in the element. Contact between members is also considered in order to obtain results that agree more closely with actual behavior, such as intermediate‐layer failure. By using the proposed code, sufficiently reliable solutions have been obtained, and the results reveal that this code can be used in the numerical estimation of the seismic design of RC framed structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
本文基于弹性波动方程,从其弱形式出发,利用Galerkin变分原理,通过对方程进行空间和时间上的离散,在空间域中引入预条件共轭梯度的逐元算法,在时间域中引入时间积分的交错网格预处理/多次校正算法,发展了弹性波模拟的Chebyshev谱元算法。针对均匀固体介质和具有倾斜分层的分区均匀固体介质模型,通过与有限差分算法结果相比较验证其精度的可信性,同时利用该算法模拟了弹性波在具有水平分层的任意起伏自由表面模型中的传播,并分析了其传播特点。研究表明,我们提出的交错网格预处理/多次校正算法的Chebyshev谱元算法,保留了有限元法的优势,并且采用了具有最优张量乘积技术的元到元的算法,能够处理带有起伏自由表面的复杂介质模型,它具有比有限元法收敛快,计算效率较高等优点,特别适合于复杂结构和复杂介质中的弹性波传播的数值模拟。  相似文献   

9.
A fluid-saturated one-layer continuum underlain by a rigid half-space is considered. An exact solution is developed in frequency domain for analyzing disturbance induced by a strip footing located at the surface with vertical harmonic excitation. Since the analytical solution can be used only for very simple conditions, a finite element model has been developed also and compared with the exact solution. It is shown that finite element results are in close agreement with the results which have been obtained by a transformation technique. The proposed finite element scheme can take into account the complex geometry and inhomogeneity for practical problems. Besides this, the analytical results exhibit the overall characteristic of wave propagation in porous media and will provide a representative test problem which can be used for a quantitative evaluation of the accuracy of various numerical solution methods.  相似文献   

10.
The development of a displacement finite element formulation and its application to convective transport problems is presented. The formulation is based on the introduction of a generalized quantity defined as transport displacement. The governing equation is expressed in terms of this quantity and by using generalized coordinates a variational form of the governing equation is obtained. This equation may be solved by any numerical method, though it is of particular interest for application of the finite element method. Two finite element models are derived for the solution of convection-diffusion boundary value problems. The performance of the two element models is discussed and numerical results are given for different cases of convection and diffusion with two types of boundary conditions. The numerical results obtained show not only the efficiency of the numerical models in handling pure convection, pure diffusion and mixed convection-diffusion problems, but also good stability and accuracy. The applications of the developed numerical models are not limited to diffusion-convection problems but can also be applied to other types of problems such as mass transfer, hydrodynamics and wave propagation.  相似文献   

11.
A procedure for the seismic analysis of underground tunnels using recorded free-field earthquakes based on the 2.5D finite/infinite element approach is presented. The near and far fields of the half space are modeled by finite and infinite elements, respectively. Using the 1D wave theory, the nodal force and displacement on the near-field boundary are computed for each spectral frequency of the earthquake. Then, equivalent seismic forces are computed for the near-field boundary for the earthquake spectrum. By assuming the soil-tunnel system to be uniform along the tunnel axis, the 2.5D approach can account for the wave transmission along the tunnel axis, which reduces to the 2D case for infinite transmission velocity. The horizontal and vertical components of the 1999 Chi-Chi Earthquake (TCU068) are adopted as the free-field motions in the numerical analysis. The maximal stresses and distribution patterns of the tunnel section under the P- and SV-waves are thoroughly studied by the 2.5D and 2D approaches, which should prove useful to the design of underground tunnels.  相似文献   

12.
A fiber-section model based Timoshenko beam element is proposed in this study that is founded on the nonlinear analysis of frame elements considering axial,flexural,and shear deformations.This model is achieved using a shear-bending interdependent formulation(SBIF).The shape function of the element is derived from the exact solution of the homogeneous form of the equilibrium equation for the Timoshenko deformation hypothesis.The proposed element is free from shear-locking.The sectional fiber model is constituted with a multi-axial plasticity material model,which is used to simulate the coupled shear-axial nonlinear behavior of each fiber.By imposing deformation compatibility conditions among the fibers,the sectional and elemental resisting forces are calculated.Since the SBIF shape functions are interactive with the shear-corrector factor for different shapes of sections,an iterative procedure is introduced in the nonlinear state determination of the proposed Timoshenko element.In addition,the proposed model tackles the geometric nonlinear problem by adopting a corotational coordinate transformation approach.The derivation procedure of the corotational algorithm of the SBIF Timoshenko element for nonlinear geometrical analysis is presented.Numerical examples confirm that the SBIF Timoshenko element with a fiber-section model has the same accuracy and robustness as the flexibility-based formulation.Finally,the SBIF Timoshenko element is extended and demonstratedin a three-dimensional numerical example.  相似文献   

13.
Jiang  Tao  Dai  Junwu  Yang  Yongqiang  Bai  Wen  Pang  Hui  Liu  Rongheng 《地震工程与工程振动(英文版)》2022,21(4):1119-1135

Typical all-steel buckling-restrained braces (BRBs) usually exhibit obvious local buckling, which is attributed to the lack of longitudinal restraint to the rectangle core plate. To address this issue, all-steel BRBs are proposed, in which two T-shaped steel plates are adopted as the minor restraint elements to restrain the core plate instead of infilled concrete or mortar. In order to investigate the factors that characterize the hysterical responses of this device, different finite element (FE) models are developed for the specific context. The FE models are developed based on nonlinear finite element software, which incorporate continuum (shell or brick) elements, large displacement, and deformation formulations. In these FE models, two different steel constitutive models are adopted to precisely reproduce the cyclic response of the BRB component. Meanwhile, comparisons between the numerical and experimental results are conducted to validate the effectiveness and accuracy of the robust FE model. The agreements between experimental observations and numerical predictions demonstrate that the FE method could be utilized for in depth parametric analysis. Furthermore, BRBs with detailed configurations can provide excellent hysteretic behavior and seismic performance through the optimal design process.

  相似文献   

14.
The multiscale finite element method is developed for solving the coupling problems of consolidation of heterogeneous saturated porous media under external loading conditions. Two sets of multiscale base functions are constructed, respectively, for the pressure field of fluid flow and the displacement field of solid skeleton. The coupling problems are then solved with a multiscale numerical procedure in space and time domain. The heterogeneities induced by permeabilities and mechanical parameters of the saturated porous media are both taken into account. Numerical experiments are carried out for different cases in comparison with the standard finite element method. The numerical results show that the coupling multiscale finite element method can be successfully used for solving the complicated coupling problems. It reduces greatly the computing effort in both memory and time for transient problems.  相似文献   

15.
This paper describes a finite element technique using the method of weighted residuals for the solution of mass oscillations in surge tanks. Three weighting functions, uniform, linear and Galerkin, are applied and the results are compared with those from alternative techniques. The relatively simple case of surge analysis with flow rate change in the penstock, but neglecting tunnel friction, is first considered as a direct analytical solution is available. Finally friction is included for comparison with a graphical and analogue solution.  相似文献   

16.
Extraction of natural frequencies of a gravity dam or an embankment dam plays an important role in the seismic design of the dam because the seismic response of a dam is dependent largely on the dynamic characteristics of the dam. Owing to the lack of exact solutions and the geometry of a dam, numerical methods such as finite element methods have been often used to extract the natural frequencies of the dam. Since the finite element method is an approximate one, the resulting finite element solution to the natural frequency of a dam cannot be safely used unless its accuracy is evaluated within the acceptable range for the seismic design of the dam. To solve this problem, some asymptotic formulae for correcting the finite element predicted natural frequencies of a gravity dam and an embankment dam have been developed in this paper. Since the present asymptotic formulae are derived from the fact that the finite element solution tends to the exact one if the finite element size used approaches zero, they provide a corrected solution of higher accuracy for the natural frequency of a dam so that the accuracy of a finite element solution can be evaluated against this corrected solution. After the correctness and usefulness of the present formulae are assessed, two practical examples have been given to show how the asymptotic formulae can be used to correct and evaluate the discretization error for the finite element predicted natural frequencies of gravity dams and embankment dams.  相似文献   

17.
三角网格有限元法声波与弹性波模拟频散分析   总被引:2,自引:2,他引:0       下载免费PDF全文
本文对声波与弹性波方程进行有限元法离散,构造有限元法频散关系的一般特征值问题,分析了时间离散格式为中心差分的三角网格有限元法声波与弹性波模拟的频散特性. 比较了三种质量矩阵即分布式质量矩阵、集中质量矩阵和混合质量矩阵对有限元法频散的影响;选取四种典型三角网格,分析了混合质量矩阵有限元(MFEM)频散的方向各向异性;数值频散、方向各向异性随插值阶数的增加逐渐减弱,当空间为三阶插值时,频散主要表现为随采样率的变化而几乎无明显方向各向异性, 其频散幅值也较小. 控制其他影响因素不变的情况下,研究了不同波速比介质中弹性波的数值频散. 最后给出了三角网格MFEM的数值耗散性.  相似文献   

18.
电导率各向异性的海洋电磁三维有限单元法正演   总被引:10,自引:8,他引:2       下载免费PDF全文
本文提出了一种基于非结构化网格的海洋电磁有限单元正演算法.为了回避场源奇异性,文中选用二次场算法,将背景电阻率设置为水平层状且各向异性,场源在水平层状各向异性介质中所激发的一次场通过汉克尔积分得到.基于Coulomb规范得到二次矢量位和标量位所满足的Maxwell方程组,通过Galerkin加权余量法形成大型稀疏有限元方程,采用不完全LU分解(ILU)预条件因子的quasi-minimum residual(QMR)迭代解法对有限元方程进行求解得到二次矢量位和标量位;进而,利用滑动平均方法得到二次矢量位和标量位在空间的导数,由此得到二次电磁场;通过一维模型对算法的可靠性进行验证,与此同时,针对实际复杂海洋电磁模型,比较有限元模拟结果与积分方程模拟结果,进一步验证算法精度.若干计算结果均表明,文中算法具有良好的通用性,适用于井中电磁、航空电磁,环境地球物理等非均匀且各向异性介质中的电磁感应基础研究.  相似文献   

19.
Two prediction models for calculating vibration from underground railways are developed: the pipe-in-pipe model and the coupled periodic finite element–boundary element (FE–BE) model.The pipe-in-pipe model is a semi-analytical three-dimensional model that accounts for the dynamic interaction between the track, the tunnel and the soil. The continuum theory of elasticity in cylindrical coordinates is used to model two concentric pipes: an inner pipe to represent the tunnel wall and an outer pipe to represent the surrounding soil. The tunnel and soil are coupled accounting for equilibrium of stresses and compatibility of displacements at the tunnel–soil interface. This method assumes that the tunnel is invariant in the longitudinal direction and the problem is formulated in the frequency–wavenumber domain using a Fourier transformation. A track, formulated as an Euler–Bernoulli beam, is then coupled to this model. Results are transformed to the space domain using the inverse Fourier transform.The coupled periodic FE–BE model is based on a subdomain formulation, where a boundary element method is used for the soil and a finite element method for the tunnel. The Craig–Bampton substructuring technique is used to efficiently incorporate the track in the tunnel. The periodicity of the tunnel is exploited using the Floquet transformation to formulate the track–tunnel–soil interaction problem in the frequency–wavenumber domain and to compute the wave field radiated into the soil.An invariant concrete tunnel, embedded in a homogeneous full space is analyzed using both approaches. The pipe-in-pipe model offers an exact solution to this problem, which is used to validate the coupled periodic FE–BE model. The free field response due to a harmonic load in the tunnel is predicted and results obtained with both models are compared. The advantages and limitations of both models are highlighted. The coupled periodic FE–BE model has a greater potential as it can account for the complex periodic geometry of the tunnel and the layering in a soil medium. The effect of coupling a floating slab to the tunnel–soil system is also studied with both models by calculating the insertion gain.  相似文献   

20.
在地震动数值模拟方法中,谱元法和有限元法是应用较广泛的两种方法。基于经典的Lamb问题模型,首先推导给出地表竖向位移的解析解答。然后分别利用常用的四阶谱元法和线性有限元法,模拟了地表脉冲力源作用下模型的位移响应。考虑有意义的最短波长内的采样点个数及单元高宽比的变化,对比了两种方法的模拟精度;结果表明:对于谱元法,观测点与波源之间需至少包含两个网格,在此条件下,最短波长内包含一个网格(最短波长内5个采样点)时,数值解与解析解的误差小于1%,已达很高的精度;对于有限元法,最短波长内需包含10个网格时才能达到这一精度。此外,在满足网格尺寸要求的前提下,单元水平向与垂直向尺寸的比值在1∶1到5∶1的范围内时,谱元法和有限元法的模拟精度均变化不大。因此,单位波长内采样点个数相同时,谱元法的模拟精度比有限元法高的多,同时,在一定范围内两种方法的模拟结果对于宽高比的变化不敏感。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号