首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Two transects of approximately the same length (transect P and transect T) were selected to examine the variation of SOC content in relation to mean annual temperature (MAT) and mean annual precipitation (MAP). The coefficients of partial correlation between SOC density and MAT (Rt) and MAP (Rp) were determined to quantify the relationships between SOC density and the two climate factors. The results indicated that for transect T, Rt was statistically significant once the extent level was greater than or equal to two fundamental extent units, while for transect P, Rp showed statistical significance only at extent levels which were greater than two fundamental extent units. At the same extent levels but in different transects, Rts exhibited no zonal difference, but Rps did once the extent level was greater than two fundamental extent units. Therefore, to study the relationship between SOC density and different climate factors, different minimum extent levels should be examined. The results of this paper could deepen the understanding of the impacts that SOC pool has on terrestrial ecosystem and global carbon cycling.  相似文献   

2.
Soil organic carbon (SOC) plays an important role in global carbon cycles.Large spatial variations in SOC contents result in uncertain estimates of the SOC pool and its changes.In the present study,the key variables explaining the SOC contents of croplands (CPs) and non-croplands (NCPs) in Chinese provinces were investigated.Data on SOC and other soil properties (obtained from the Second National Soil Survey conducted in the late 1970s to the early 1990s),climate parameters,as well as the proportion of the CP to the total land area (Pcp) were used.SOC content variations within a province were larger than those among provinces.Soil clay and total phosphorus content,ratio of annual precipitation to mean temperature,as well as Pcp were able to explain 75% of the SOC content variations in whole soil samples.Soil pH,mean temperature during the growing season from May to October,and mean annual wind velocity were able to explain 63% of the SOC content variations in NCP soils.Compared with NCP soils,CP soils had lower SOC contents,with smaller variations within and among provinces and lower C/N ratios.Stepwise regression showed that the soil clay content was a unique factor significantly correlated with the SOC content of CP soils.However,this factor only explained 24% of the variations.This result suggested that variables related to human activities had greater effects on SOC content variations in CP soils than soil properties and climate parameters.Based on SOC contents directly averaged from soil samples and estimated by regression equations,the total SOC pool in the topsoil (0-20 cm) of China was estimated at 60.02 Pg and 57.6 Pg.Thousands of years of intensive cultivation in China resulted in CP topsoil SOC loss of 4.34-4.98 Pg.  相似文献   

3.
The effects of freeze-thaw cycles on sorption/desorption of dissolved organic carbon (DOC) in two wetland soils and one reclaimed wetland soil were investigated. DOC concentrations added were 0-600 mg/L. Laboratory incubations of sorption/desorption of DOC had been carried out at -15℃ for 10 h, and then at +5℃ for 13 h. Soil samples were refrozen and thawed subsequently for 5 cycles. Initial Mass model was used to describe sorption behavior of DOC. The results indicate that freeze-thaw cycles can significantly increase the sorption capacity of DOC and reduce the desorption capacity of DOC in the three soils. The freeze-thaw effects on desorption of DOC in soils increase with the increasing freeze-thaw cycles. The conversion of natural wetlands to soybean farmland can decrease the sorption capacity and increase the desorption capacity of DOC in soils. Global warming and reclamation may increase DOC release, and subsequently increase the loss of carbon and the emission of greenhouse gas.  相似文献   

4.
《山地科学学报》2021,18(9):2377-2387
Accumulation and losses of soil organic carbon(SOC), total nitrogen(TN) and sulphur(S) influence food security and global warming. Therefore, their spatial distribution and variability at regional scale, and their relation to topographical variables are of great interest. In this study, the variability of SOC, TN and S content was evaluated in apple orchard soils of Kashmir region, at three depths(D1: 0-10, D2: 10-20, and D3: 20-30 cm) on slope gradient i.e.: flat, medium, and high. With an increase in slope, a significant decrease of SOC and TN was observed, with concentration of SOC and TN recorded highest(14.3±2.06 g kg~(-1) 0.97±0.35 g kg~(-1)) in flat slope orchards and lowest(9.6±2.07 g kg~(-1) 0.84±0.41 g kg~(-1)) in high slope orchards. On stock basis, the values recorded for flat, medium, and high slope orchards, for SOC and TN were 54.62±4.24 Mg ha~(-1) 0.38±0.06 Mg ha~(-1), 44.13±5.11 Mg ha~(-1) 0.32±0.09 Mg ha~(-1), and 38.73± 5.94 Mg ha~(-1) 0.28±0.10, respectively. The differences for S concentration and stocks were modest, with flat(0.21±0.15 mg kg~(-1) 0.09±0.0.003 Mg ha~(-1)) high(0.16±0.07 mg kg~(-1) 0.06±0.007 Mg ha~(-1)) medium(0.12±0.04 mg kg~(-1) 0.075±0.009 Mg ha~(-1)). Across slopes, SOC, TN and S decreased with increasing soil depth, suggesting clear downward trend. Overall, SOC and TN increased with the increase of altitude, precipitation and clay content while its relationship with soil acidity and soil bulk density was negative. The findings may provide scientific basis to structure agricultural development plans or prioritize regions for soil conservation efforts.  相似文献   

5.
Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon(SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0–20 cm, 20–40 cm, 40–60 cm and 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in 40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration( 40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future.  相似文献   

6.
Land cover type is critical for soil organic carbon(SOC) stocks in territorial ecosystems. However, impacts of land cover on SOC stocks in a karst landscape are not fully understood due to discontinuous soil distribution. In this study, considering soil distribution, SOC content and density were investigated along positive successional stages(cropland, plantation, grassland, scrubland, secondary forest, and primary forest) to determine the effects of land cover type on SOC stocks in a subtropical karst area. The proportion of continuous soil on the ground surface under different land cover types ranged between 0.0% and 79.8%. As land cover types changed across the positive successional stages, SOC content in both the 0–20 cm and 20–50 cm soil layers increased significantly. SOC density(SOCD) within 0–100 cm soil depth ranged from 1.45 to 8.72 kg m-2, and increased from secondary forest to primary forest, plantation, grassland, scrubland, and cropland, due to discontinuous soil distribution. Discontinuous soil distribution had a negative effect on SOC stocks, highlighting the necessity for accurate determination of soil distribution in karst areas. Generally, ecological restoration had positive impacts on SOC accumulation in karst areas, but this is a slow process. In the short term, the conversion of croplandto grassland was found to be the most efficient way for SOC sequestration.  相似文献   

7.
Soil organic carbon (SOC) was considered to be a key index in evaluation of soil degradation and soil C sequestration. To discuss the spatial-temporal dynamics of SOC in arable layer in reversed desertification area, a case study was conducted in Yulin City, Shaanxi Province, China. Data of SOC were based on general soil survey in 1982 and repeated soil sampling in 2003. Soil organic carbon content (SOCC) was determined by K2Cr3O2-FeSO4 titration method, and soil organic carbon density (SOCD) was calculated by arithmetic average and area weighted average method, respectively. On average, SOCC and SOCD of the arable layer in the study area from 1982 to 2003 had increased 0.5 Ig/kg and 0.16kg/m2, respectively. Considering main soil types, the widest distributed Arid-Sandic Entisols had lowest values and increments of SOCC and SOCD during the study period; while the second widest Los-Orthic Entisols had higher values and increments of SOCC and SOCD, compared to the mean values of the whole region. The results indicated that reversed desertification process was due to the modification of land use and management practices, such as natural vegetation recovery, planting grass, turning arable land to grassland, and soil and water conservation etc., which can improve SOCC and SOCD and thus enhance soil C sequestration.  相似文献   

8.
Soil organic carbon is of great importance to terrestrial ecosystems.Studies on the amount and spatial distribution of soil organic carbon stock in various types of soil can help to better understand the role of soil in the global carbon cycle and provide a scientific basis for the assessment of the magnitude of carbon stored in a given area.Here we present estimates of soil organic carbon stock in soils in the upper reaches of the Yangtze River based on soil types as defined by Chinese Soil Taxonomy and recently compiled into a digital soil database.The results showed that the total soil organic carbon stock of the upper Yangtze River to a depth of 100 cm was 1.452×1013kg.The highest soil organic carbon stock was found in felty soils(2.419×1012kg),followed by dark brown soils(1.269×1012kg),and dark felty soils(1.139×1012kg).Chernozems and irrigation silting soils showed the lowest soil organic carbon stock,mainly due to the small total area of such soils.The soil organic carbon density of these major soil types ranged from 5.6 to 26.1 kg m-2.The average soil organic carbon density of the upper reaches of the Yangtze River was 16.4 kg m-2,which was higher than that of the national average.Soil organic carbon density indicated a distinct decreasing trend from west to east,which corresponds to the pattern of increasing temperature from cold to subtropical.  相似文献   

9.
Dissolved organic carbon (DOC) is an important component of the terrestrial carbon cycle. However, the sources and controlling factors of DOC in soils remain uncertain. In this study, the effects of nitrogen (N) amendment and crop growth on DOC in soil solution were examined at a maize-wheat rotated field located in the central Sichuan Basin in southwestern China. Nitrogen treatments in this study included 150 kg N ha-1 season-1, 200 kg N ha-1 season-1 and the control without any fertilizer application. During the whole experimental period, we observed significant decreases (p<0.05) in DOC concentrations in the sampled soil solutions associated with increase in N inputs at the bare soil plots, but no change in DOC at the plots with crop growth. The estimated average contributions of plantderived DOC were 16%, 24% and 32% of total DOC in the summer maize season and 21%, 32% and 38% in the winter wheat season along with the gradient of N fertilizer application rates. The results implied that the crop growth could play a key role in the soil DOC production, and the N input enhanced DOC production by increasing crop growth. The relationship between the DOC concentrations and the crop root biomass was statistically significant for both the maize and winter wheat seasons. Our observations indicated that crop growth exerted greater influence on the seasonal variability of DOC concentration in soil solutions at the experimental site, which overwhelmed the effect of soil native organic matter decomposition on DOC concentrations in soil solutions.  相似文献   

10.
The dynamics of soil organic carbon(SOC)in cropland is one of the central issues related to both soil fertility and environmental safety. However, little information is available at county level regarding the spatiotemporal variability of SOC in the southwestern mountainous region of China. Thus, this study aimed to explore spatiotemporal changes of SOC in the cultivated soil layer of dry land in Mojiang County,Yunnan Province, China. Data were obtained from the second national soil survey(SNSS) of 1985 and soil tests for fertilizer application carried out by the Mojiang Agricultural Bureau in 2006. The ANOVA test was applied to determine any significant differences between the datasets, while semivariogram analysis was performed on geostatistics via an ordinary Kriging method in order to map spatial patterns of soil organic carbon density(SOCD). The results revealed that SOCD in the cultivated soil layer significantly decreased from 3.93 kg m~(-2) in 1985 to 2.89 kg m~(-2) in 2006, with a total soil organic carbon stock(SOCS) decrease of 41.54×10~4 t over the same period. SOCS levels fell most markedly in yellow-brown soil at a rate of51.52%, while an increase of 8.70% was found in the analysed latosol. Geostatistical analysis also showed that the recorded changes in SOCD between 1985 and2006 were spatially structured. The decreasing trend might be attributed to the combined action of intense cultivation, major crop residue removal without any protective tillage measures, unreasonable fertilization and natural climatic diversity inducing a large decrease in SOC in the studied cultivated dry land region of Mojiang County. Therefore, management measures such as protective tillage should be undertaken in order to enhance soil C sequestration.  相似文献   

11.
In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different land uses on soil labile organic carbon,soils of Calamagrostis angustifolia wetland,Carex lasiocarpa wetland,dry farmland,paddy field,forest land and abandoned cultivated land were collected for measuring the contents of soil microbial biomass carbon (MBC),dissolved organic carbon (DOC),readil...  相似文献   

12.
The main aim of this paper was to calculate soil organic carbon stock (SOCS) with consideration of the pedogenetic horizons using expert knowledge and GIS-based methods in northeastern China. A novel prediction process was presented and was referred to as model-then-calculate with respect to the variable thicknesses of soil horizons (MCV). The model-then-calculate with fixed-thickness (MCF), soil profile statistics (SPS), pedological professional knowledge-based (PKB) and vegetation type-based (Veg) methods were carried out for comparison. With respect to the similar pedological information, nine common layers from topsoil to bedrock were grouped in the MCV. Validation results suggested that the MCV method generated better performance than the other methods considered. For the comparison of polygon based approaches, the Veg method generated better accuracy than both SPS and PKB, as limited soil data were incorporated. Additional prediction of the pedogenetic horizons within MCV benefitted the regional SOCS estimation and provided information for future soil classification and understanding of soil functions. The intermediate product, that is, horizon thickness maps were fluctuant enough and reflected many details in space. The linear mixed model indicated that mean annual air temperature (MAAT) was the most important predictor for the SOCS simulation. The minimal residual of the linear mixed models was achieved in the vegetation type-based model, whereas the maximal residual was fitted in the soil type-based model. About 95% of SOCS could be found in Argosols, Cambosols and Isohumosols. The largest SOCS was found in the croplands with vegetation of Triticum aestivum L., Sorghum bicolor (L.) Moench, Glycine max (L.) Merr., Zea mays L. and Setaria italica (L.) P. Beauv.  相似文献   

13.
Land use changes are known to alter soil organic carbon (SOC) and microbial properties, however, information about how conversion of natural forest to agricultural land use as well as plantations affects SOC and microbial properties in the Changbai Moun- tains of Northeast China is meager. Soil carbon content, microbial biomass carbon (MBC), basal respiration and soil carbon mineraliza- tion were studied in five selected types of land use: natural old-growth broad-leaved Korean pine mixed forest (NF); spruce plantation (SP) established following clear-cutting of NF; cropland (CL); ginseng farmland (GF) previously under NF; and a five-year Mongolian oak young forest (YF) reforested on an abandoned GF, in the Changbai Mountains of Northeast China in 2011. Results showed that SOC content was significantly lower in SP, CL, GF, and YF than in NF. MBC ranged from 304.4 mg/kg in CL to 1350.3 mg/kg in NF, which was significantly higher in the soil of NF than any soil of the other four land use types. The SOC and MBC contents were higher in SP soil than in CL, GF, and YF soils, yielding a significant difference between SP and CL. The value of basal respiration was also higher in NF than in SP, CL, GF, and YF. Simultaneously, higher values of the metabolic quotient were detected in CL, GF, and YF soils, indicat- ing low substrate utilization of the soil microbial community compared with that in NF and SP soil. The values of cumulative mineral- ized carbon and potentially mineralized carbon (Co) in NF were significantly higher than those in CL and GF, while no significant dif- ference was observed between NF and SP. In addition, YF had higher values of Co and C mineralization rate compared with GF. The results indicate that conversion from NF into agricultural land (CL and GF) uses and plantation may lead to a reduction in soil nutrients (SOC and MBC) and substrate utilization efficiency of the microbial community. By contrast, soils below SP were more conducive to the preservation of soil organic matter, which was reflected in the comparison of microbial indicators among CL, GF, and YF land uses. This study can provide data for evaluating soils nutrients under different land use types, and serve as references for the rational land use of natural forest in the study area.  相似文献   

14.
Aiming at the shortage of sufficient continuous parameters for using models to estimate farmland soil organic carbon (SOC) content, an acquisition method of factors influencing farmland SOC and an estimation method of farmland SOC content with Internet of Things (IOT) are proposed in this paper. The IOT sensing device and transmission network were established in a wheat demonstration base in Yanzhou Distict of Jining City, Shandong Province, China to acquire data in real time. Using real-time data and statistics data, the dynamic changes of SOC content between October 2012 and June 2015 was simulated in the experimental area with SOC dynamic simulation model. In order to verify the estimation results, potassium dichromate external heating method was applied for measuring the SOC content. The results show that: 1) The estimated value matches the measured value in the lab very well. So the method is feasible in this paper. 2) There is a clear dynamic variation in the SOC content at 0.2 m soil depth in different growing periods of wheat. The content reached the highest level during the sowing period, and is lowest in the flowering period. 3) The SOC content at 0.2 m soil depth varies in accordance with the amount of returned straw. The larger the amount of returned straw is, the higher the SOC content.  相似文献   

15.
The purpose of this study was to assess the effect of long-term cultivation and water erosion on the soil organic carbon (OC) in particle-size fractions. The study site is located at Nihegou Watershed in the Southern Loess Plateau, China. The soil at this site is loess with loose and silty structure, and contains macropores. The results showed that the OC concentrations in sediments and in the particle-size fractions of sediments were higher than those in soils and in the particle-size fractions of soils. The OC concentration was highest in the clay particles and was lowest in the sand particles. Clay particles possessed higher OC enrichment ability than silt and sand particles. The proportions of OC in the silt fractions of soil and sediment were the highest (mean value of 53.87% and 58.48%, respectively), and the total proportion of OC in the clay and silt fractions accounted for 96% and 98% of the total OC in the soil and sediment, respectively. The loss of OC was highest in silt particles, with an average value of 0.16 Mg ha^-1 y^-1, and was lowest in the sand (0.003 Mg ha^-1 y^-l). This result suggests that the fine particle-size fraction in the removed sediment may be an important indicator to assess soil OC losses.  相似文献   

16.
Information on phosphorus (P) adsorption and its impacts on the redistribution of the P fraction in soil profiles are important for environmental management under intensive agricultural practices. To clarify the dominant factors influencing soil phosphorus adsorption in an Entisol (locally known as purple soil), P adsorption experiments were conducted in Sichuan Basin of southwestern China for cropland and woodland soils with acidic, neutral and calcareous origins throughout their profile. After various doses of P were added during incubation experiments, soil P fractions were also analyzed. The results showed that there were no significant differences in Fe-oxides and P adsorption along the vertical gradients. Agricultural practices and lower pH conditions reduced the P adsorption capacity of purple soils throughout the soil profiles. For acidic and neutral purple soil profiles, the P adsorption capability was mainly influenced by Fe-oxides and soil texture. Ca-bound P and Fe-Al-bound P represented the majority of the total inorganic P of calcareous soils. There was a saturation of adsorption capacity by sesquioxide and a high risk of dissoluble reactive P (NH4Cl-P) being released out of the soil profile in acidic and neutral purple soils after the greatest P addition, indicated by the higher proportions of NH4Cl-P (over 40%) and decreasing Fe-Al-P fraction. P fractions migrated with greater difficulty in calcareous purple soil profiles as Ca-P fraction peaked over 65% when adding a P dose at or greater than 80 g P kg-1, indicating the high potential of P adsorption. The X-Ray Diffraction analysis also verified the formation of brushite. Adaptive management practices should be designed to alleviate P losses for acidic and neutral purple soils.  相似文献   

17.
Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)and total nitrogen(TN)contents in alpine wetland.A field survey of 180 soilsampling profiles was conducted in an alpine wetland that has been classified into three degradation succession stages.The SOC and TN contents of soil layers from 0 to 200 cm depth were studied,including their distribution characteristics and the relationship between microtopography.The results showed that SOC and TN of different degradation succession gradients followed the ranked order of Non Degradation(ND)>Light Degradation(LD)>Heavy Degradation(HD).SWC was positively correlated with SOC and TN(p<0.05).As the degree of degradation succession worsened,SOC and TN became more sensitive to the SWC.Microtopography was closely related to the degree of wetland degradation succession,SWC,SOC and TN,especially in the topsoil(0-30 cm).This result showed that SWC was an important indicator of SOC/TN in alpine wetland.It is highly recommended to strengthen water injection into the wetland as a means of effective restoration to reverse alpine meadow back to marsh alpine wetland.  相似文献   

18.
Rapid urbanization results in the conversion of natural soil to urban soil,and consequently,the storage and density of the soil carbon pools change.Taking Chongqing Municipality of China as a study case,this investigation attempts to better understand soil carbon pools in hilly cities.First,the vegetated areas in the study area were derived from QuickBird images.Then,topsoil data from 220 soil samples(0-20 cm) in the vegetated areas were collected and their soil organic carbon(SOC) densities were analyzed.Using the Kriging interpolation method,the spatial pattern of SOC was estimated.The results show that the SOC density exhibited high spatial variability in the urban topsoil of Chongqing.First,the SOC density in topsoil decreased according to slope in the order 2°-6° < 25°-90° < 0°-2° < 6°-15° < 15°-25°.Second,the newly developed areas during 2001-2010 had a lower SOC density than the areas built before 1988.Third,urban parks and gardens had a higher SOC density in topsoil,residential green land followed,and scattered street green land ranked last.For hilly cities,the variability of terrain affects the distribution of SOC.The Kriging results indicate that Kriging method combining slope with SOC density produced a high level of accuracy.The Kriging results show that the SOC density to the north of the Jialing River was higher than the south.The vegetated areas were estimated to amount to 73.5 km2 across the study area with an SOC storage of 0.192 Tg and an average density of 2.61 kg/m2.  相似文献   

19.
Labile organic carbon (LOC) is a fraction of soil organic carbon (SOC) with rapid turnover time and is affected by soil fertilization. This investigation characterized the SOC content, LOC content and LOC distribution in the treatment plots of surface soil erosion at five levels (0-, 5-, 10-, 20- and 30-cm erosion). The soil had received contrasting fertilizer treatments (i.e., chemical fertilizer or chemical fertilizer + manure) for 6 years. This study demonstrated that both SOC and various LOC fractions contents were higher in the plots with fertilizer + manure than in those with fertilizer alone under the same erosion conditions. The SOC and LOC contents de- creased as the erosion depth increased. Light fraction organic carbon, particulate organic carbon, easily oxidizable organic carbon (KMnO4-oxydizable organic carbon), and microbial biomass carbon were 27% 57%, 37%-7%, 20%-25%, and 29%-33% higher respectively in the fertilizer + manure plots, than in the fertilizer alone plots. Positive correlations (p 〈 0.05) between SOC content and different fractions contents were observed in all plots except the correlation between total SOC content and water-soluble organic carbon content in the different fertilization treatments. Obviously, fertilizer + manure treatments would be conducive to the accumulation of LOC and SOC in the Black soil of Northeast China.  相似文献   

20.
Chemical means were used to extract polyphenols from healthy brown algae collected in littoral seawater. Experiments on corrosion of A3 steel, the time-potential curve, and polarization curve in polyphenols seawater showed stronger cathodic polarization compared with that in common seawater. This indicates that brown algae polyphenols might feasibly be used as corrosion inhibitor in seawater. Contribution No. 3763 from the Institute of Oceanology, Chinese Academy of Sciences. Project 59471054 supported by NSFC and National “Nineth Five Year” Project 96-916-04-01.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号