首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equations of the shear-flow yields the analytical solutions of the secondary circulation.The solutions indicate that a flow with a parabolic horizontal velocity shear and a sinusoidal vertical velocity shear will induce a pair of vortexes with opposite signs distributed symmetrically on the two sides of central line of a rectangular canal.In the case of the presence of surface Ekman layer with the direction of Ekman current opposite to(coincident with) the mean flow,the two vortexes converge(diverge) at the central line of canal in the upper layer and form a surface current convergent(divergent) zone along the central line of the canal.In the case of the absence of surface Ekman layer,there is no convergent(divergent) zone formed over the sea surface.The theoretical results are applied to interpretations of three convergent cases,one divergent case and statistics of 27 cases of satellite observations in the submerged sand ridge region of the Liaodong Shoal in the Bohai Sea.We found that the long,finger-like,bright patterns on SAR images are corresponding to the locations of the canals(or tidal channels) formed by two adjacent sand ridges rather than the sand ridges themselves.  相似文献   

2.
The rapid changes in flow pattern due to varying channel widths will make significantly impact on the hydraulic structures and evolutions of open channel. To better understand the impact of varying width, a flume experiment with adjustable width and a depth-averaged two-dimension numerical model were used to analyze the variations of flow parameters. Our experimental results showed that flow velocity gradually increased with decreasing water depth in converging region, and decreased with increasing water depth in diverging zones. It was also found that the turbulence intensity laws in three directions were not agreed with the theoretical relationships proposed by Nezu and Nakagawa in 1993 in straight open channel flows. The flow in the channel with varying width may change from the supercritical flow to the subcritical flow as a function of Froude number. Our numerical simulations with different flow rates showed that most of the hydraulic jumps in diverging region were submerged jump and the degree of submergence increased with increasing flow rate in gradual channel transition. When the flow rate increased, the range of supercritical flow rapidly decreased and the flow changed from the supercritical condition to the subcritical condition in diverging sections.  相似文献   

3.
The floodplain -egetation of the Tarim River in Northwest China is strongly influenced by irrigated agriculture. The abstrac- tion of river water disturbs; the natural dynamics of the floodplain ecosystem. The human impact on the hydrological system by bank dams and the irrigation of cotton plantings have caused adverse changes of the Tarim River and its floodplains, so the current stocks of the typical Tugai vegetation show significant signs of degradation. Field studies of soils and statistical analysis of soil moisture data have shown that the vitality of the Tugai vegetation is primarily determined by its position to the riverbank and the groundwater. There exist complex interactions between soil hydrological conditions and the vitality of the vegetation. But the availability of water is not only influenced by the groundwater level and seasonal flood events. The spatial distribution of stocks at different states of vitality seems also to be decisively influenced by physical soil properties. Our results show that the water supply of plant communities is strongly in- fluenced by the soil texture. Spatial differences of soil moisture and corresponding soil water tensions may be the decisive factors for the zonafion of vegetation. Physical soil properties control the water retention and rising of capillary water from deeper soil layers and the phreatic zone and may supply the root systems of the phreatophytic vegetation with water. Keywords: soil moisture;soil texture; soil water tensions; Tarim River; water retention  相似文献   

4.
The influence of vegetation and sediment on flow characteristics in open channels cannot be neglected. To study the flow variability under the effects of the instream natural vegetation and sediment supply, experiments were conducted with varied water and sediment supply in a movable bed of a river prototype. The instantaneous three-dimensional velocities near two types of vegetation patches (the shrub and the weed) and along the centerline of the main channel with vegetation belts were measured using a 3-D side-looking acoustic Doppler velocimetry. The experimental results show that both the instream vegetation and sediment supply strongly affect the flow and turbulence characteristics. In the case of vegetation patches, both the shrub and weed have a considerable influence on the distribution of the streamwise velocity and turbulence intensity of their surrounding water. The streamwise velocity distribution followed as J-shape and linear shape around the weed and shrub under different experimental conditions. The turbulence intensity was large at the top of the weed and shrub; the shrub had its greatest influence on the downstream water flow. In the case of vegetation belts, the streamwise velocity along the centerline of the main channel exhibited an S-shape, J-shape and linear shape at different locations under varied water, vegetation structures and riverbed configurations. The turbulence intensity along the centerline of the main channel ranged from 0.0 to 0.1. The upstream turbulence intensity was affected considerably by a sediment supply, while the downstream turbulence intensity changed with the varied vegetation characteristics and riverbed topography. The second flow coefficient M-value increased longitudinally and was almost positive along the centerline of the main channel, implying that the rotational direction of the secondary current cell was clockwise.  相似文献   

5.
This study gives an analytical solution for wave interaction with a partially reflecting vertical wall protected by a submerged porous bar based on linear potential theory. The whole study domain is divided into multiple sub-regions in relation to the structures. The velocity potential in each sub-region is written as a series solution by the separation of variables. A partially reflecting boundary condition is used to describe the partial reflection of a vertical wall. Unknown expansion coefficients in the series solutions are determined by matching velocity potentials among different sub-regions. The analytical solution is verified by an independently developed multi-domain boundary element method(BEM) solution and experimental data. The wave run-up and wave force on the partially reflecting vertical wall are estimated and examined, which can be effectively reduced by the submerged porous bar. The horizontal space between the vertical wall and the submerged porous bar is a key factor, which affects the sheltering function of the porous bar. The wave resonance between the porous bar and the vertical wall may disappear when the vertical wall has a low reflection coefficient. The present analytical solution may be used to determine the optimum parameters of structures at a preliminary engineering design stage.  相似文献   

6.
Bedload governs riverbed channel variations and morphology, it is necessary to determine bedload discharge through an arbitrary cross section in a mountain river. A new system with submerged load cells has been developed to directly measure bedload discharge. The system consists of: (1) an iron box which is 1 m long, 0.5 m wide and 0.1 m in depth, (2) two submerged load cells 0.7 m apart, (3) a pressure sensor and, (4) an electromagnetic velocity meter. This system has been designed to exclude the effect of the hydraulic pressure of water on direct measurements of bedload particle weight. Initial tests in a laboratory were conducted to examine the accuracy of measurements with the system under aerial conditions. The system has been installed in the supercritical flume in Ashi-arai-dani River of the Hodaka Sedimentation Observatory of the Disaster Prevention Research Institute (DPRI) of Kyoto University to obtain bedload discharge under natural conditions. Flume tests were conducted in this channel by artificial supply of uniform sediment particles of several grain sizes. The average velocity of the sediment particles near the bed was estimated using cross-correlation functions for weight waves obtained by the two load cells. Bedload discharge calculations were based on time integration of the product of sediment velocity and sediment weight obtained by the two load cells. This study clarifies the reasons why bedload measurements are difficult, and provides some solutions using the monitoring systems with submerged load cells through the field measurements. Additionally, the applicability of bedload measurement with the submerged load cells is explained based on experimental artificial sediment supply data.  相似文献   

7.
Roughness elements are various in a mountain area; they include gravel and ground surface vegetation that often result in surface friction drag to resist overland flows. The variation and characteristics of flow resistance strongly impact the overland flow process and watershed floods. In view of the universal existence of natural vegetation, such as Chlorophytum malayense(CM) or Ophiopogon bodinieri(OB), and the sand-gravel bed of the river channel, it is important to understand the role of different types of roughness elements in flow resistance. This study was performed to investigate and compare through flume experiments the behaviors of overland flow resistance by the reaction of multi-scale configuration of different roughness elements. The result showed that the resistance coefficient gradually reduced versus the increase of flow rate in unit width and tended to be a constant when q = 3.0 l/s.m, Fr = 1.0, and Re = 4000 for slopes of 6 to 10 degrees. The gap of the vegetated rough bed and the gravel rough bed is limited to the same as the gap of the two types of vegetation, CM and OB. It was noted that the vegetation contributed to the increase in form resistance negatively and may lead to the mean resistance on decrease. To classify the flow pattern, the laminar flows were described by DarcyWeisbach's equation. In the study the f-Re equation of vegetated bed was developed with f ?5000 Re.The friction coefficient for laminar flows can be regarded as the critical value for identifying the transformation point of the flow pattern.  相似文献   

8.
Better understanding of the role of vegetation and soil on hydraulic resistance of overland flow requires quantitative partition of their interaction. In this paper, a total of 144 hydraulic flume experiments were carried out to investigate the hydraulic characteristics of overland flow. Results show that hydraulic resistance is negatively correlated with Reynolds number on non-simulated vegetated slopes, while positively on vegetated slopes. The law of composite resistance agrees with the dominant resistance, depending on simulated vegetation stem, surface roughness, and discharge. Surface roughness has greater influence on overland flow resistance than vegetation stem when unit discharge is lower than the low-limited critical discharge, while vegetation has a more obvious influence when unit discharge is higher than the upper-limited critical discharge. Combined effects of simulated vegetation and surface roughness are unequal to the sum of the individual effects through t-test, implying the limitation of using linear superposition principle in calculating overland flow resistances under combined effect of roughness elements.  相似文献   

9.
In the present paper a three-dimensional model has been used to calculate the vertical structure of the current generated by typhoon surge. The aim of this work is to obtain support for the depth-averaged model, which is based upon two basic assumptions. One of them is that the current has a negligible vertical structure and the other is that the velocity veering angle is small. Our results show that, in most of the real storm surge cases, these two assumptions are quite good approximations of the real situation, especially when water is shallow, and the locations are near the shore. These features are usually encountered in the real storm surges with which we are concerned. Therefore, we can expect that the two-dimensional depth-averaged model will give satisfactory results. The experiments carried out by using a straight coastline and uniform depth give vertical structures which are compatible with the conclusions previously reached by other authors.  相似文献   

10.
In this paper,an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau(QTP) was delineated.The vegetation map model was extracted from vegetation sampling with remote sensing(RS) datasets by decision tree method.The spatial resolution of the map is 1 km×1 km,and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas.The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km~2.In the vegetated region,50,260 km~2 is the areas of alpine swamp meadow,583,909 km~2 for alpine meadow,332,754 km~2 for alpine steppe,and 234,828 km~2 for alpine desert.This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of highaltitude areas.  相似文献   

11.
Vegetation in slopes can effectively improve slope stability.However,it is difficult to estimate the effects of vegetation on slope stability because of variations in plant species and environmental conditions.Moreover,influences of plant growth on slope stability change with time,resulting in changes in the safety factor.This study was conducted to evaluate the stability of vegetated slopes with time and investigate the effects of different layouts of plant species on slope stability.Here,we used a plant growth model and slope stability analysis to build an evaluation model.To accomplish this,one species of tree,shrub and grass was chosen to set six layout patterns.A slope with no vegetation served as a control.The safety factors of the seven slopes were then calculated using the developed evaluation model and differences in the safety factors of slopes were compared and discussed.The slope vegetated with Platycladus orientalis reached the most stable state at the age of 60 years.Shrub slope(Vitex negundo)had the maximum safety factor after 20 years.Overall,the safety factor of vegetated slopes increased from 12.1%to 49.6% compared to the slope with no vegetation.When wind force was considered,the safety factor value of the slope changed from 3.5%to 43.5%.Vegetation mixtures of trees and grasses resulted in the best slope stability.Planting grasses on slopes can improve slope stability of trees to a greater degree than that of slopes with shrubs in the early stage of growth.  相似文献   

12.
mooUonONEutrophicationhasdri,andwillperhapsbethemostwidespreadtypeofenviron-rnentalpollutionofwaterbodis.MostUrbanorsuburbanshallowwaterbodishaveex-perientaladetalrnan-causedeutrophhationinevitablyresultinginovergroWthofphytoplanktonandotherdramaticlakeeresySteInchangessuchasthedeCineofmacrophytes.TheensuingdeteriorationofwaterqualitycaedseriousenvirorunentalanderenoAncprobbo,bousemostoftheselakes,asidefrombeingwatefbodiesforlargescalecoInmendalfisheryusuallysupplywaterforindustryandagrict…  相似文献   

13.
Downstream changes in channel morphology and flow over the ephemeral Dwarkeswar River in the western part of the Bengal Basin, eastren India were investigated. The river stretches from the Proterozoic Granite Gneiss Complex to the recent Holocene alluvium, forming three distinctive geomorphological regions across the river basin: the pediplane and upper and lower alluvial areas. Sixty cross-sections from throughout the main trunk stream were surveyed and the bankfull width, depth, cross-sectional area, and maximum depth were measured. Sediment samples from each location were studied and the flow velocity, stream power, Manning's roughness coefficient, and shear stress were estimated. The results show that the bankfull channel cross-section area, width, width-to-depth ratio, and channel capacity increased between the beginning and middle of the river. Thereafter, the size of the river started to decrease in the lower alluvial area. This was characterized by gentle gradients, cohesive bank materials with grass cover, and channel switching. Within the lower part of the river, the channel capacity was observed to diminish as the drainage area increased. This increased the bankfull flow frequency and accelerated large floodwater losses in the floodplain via overbank flows and floodways.  相似文献   

14.
Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed, free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigenso-lution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore, an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.  相似文献   

15.
This paper reports the first photosynthetic study of marestail in Jiuzhaigou. In this work, we used PAM fluorometry to examine photosynthetic rates of submerged and emerged marestail in three lakes. Three lakes were studied across a gradient of water temperature, with low water temperature conditions in Grass Lake and Arrow Bamboo Lake, and higher water temperature in Five Colored Lake. In the field, electron transport rates (ETRmax) were measured as rapid light curves (RLCs) by in situ yield measurements. Submerged and emerged marestail showed higher photosynthetic activity in Five Colored Lake compared to the other lakes, a response consistent with the adaptation of marestail in Five Colored Lake to high water temperature. The optimal temperature for photosynthesis of submerged marestail in Jiuzhaigou was about 12 °C. Nonphotochemical quenching (NPQ) of submerged and emerged marestail increased with increasing water temperature. Maximum quantum yield (F v/F m) of submerged marestail in Five Colored Lake showed full recovery at 1700 h due to higher NPQ. Further, the chlorophyll a for submerged marestail was the highest in Grass Lake and the lowest in Five Colored Lake. These results indicate that in different lakes the function of these aquatic plants is associated with a diversity of place-dependent environmental conditions, especially water temperature that leads to pronounced differences in the plant’s ecophysiological reactions.  相似文献   

16.
Phosphorus fractions and adsorption-release characteristics of sediments in the Zhujiang(Pearl) River estuary wetland were investigated.Results showed that the total phosphorus(TP) content in surface sediments ranged from 648.9 mg/kg to 1064.0 mg/kg;inorganic phosphorus(IP) was the major fraction of TP and ranged from 422.5 mg/kg to 643.9 mg/kg.Among the inorganic phosphorus,the main fractions were phosphorus bound to Al and Fe(Fe/Al-P),and calcium-bound phosphorus(Ca-P),accounting for 23%–42% and 21%–67% of IP,respectively.The vertical distribution of TP contents were significantly positive correlated with organic phosphorus(Org-P) and Fe/Al-P contents.The bio-available phosphorus contents in vertical sediments varied from 128.6 mg/kg to 442.9 mg/kg,mainly existed in Fe-Al/P fraction,and increased from the bottom to top sediments.The transport of phosphorus in sediment-water interface was controlled by the soil characteristics.The active Fe and Al content was considered as the main factor that determines adsorption capacity in vegetated marsh wetland.The P buffering capacity of the sediments in vegetated marsh wetland was greater than that in mudflat wetland.The potential risk of eutrophication in the study area is high.Reducing terrestrial phosphorus discharge and preventing the sediment Fe/Al-P release to the interstitial water are the possible solutions to reduce the risk of eutrophication in estuary wetlands,and planting vegetation in estuary wetland can also reduce the release of phosphorus in surface sediment.  相似文献   

17.
18.
Strong wind events frequently result in creating large areas of windthrow, which causes abrupt environmental changes. Bare soil surfaces within pits and root plates potentially expose soil to erosion. Absence of forest may alter the dynamics of water circulation. In this study we attempt to answer the question of whether extensive windthrows influence the magnitude of geomorphic processes in 6 small second-to third-order catchments with area ranging from 0.09 km2 to 0.8 km2. Three of the catchments were significantly affected by a windthrow which occurred in December 2013 in the Polish part of the Tatra Mountains, and the other three catchments were mostly forested and served as control catchments. We mapped the pits created by the windthrow and the linear scars created by salvage logging operations in search of any signs of erosion within them. We also mapped all post-windthrow landslides created in the windthrow-affected catchments. The impact of the windthrow on the fluvial system was investigated by measuring a set of channel characteristics and determining bedload transport intensity using painted tracers in all the windthrow-affected and control catchments. Both pits and linear scars created by harvesting tend to become overgrown by vegetation in the first several years after the windthrow. The only signs of erosion were observed in 10% of the pits located on convergent slopes. During the period from the windthrow event in 2013 until 2019, 5 very small(total area 100 m2) shallow landslides were created. The mean distance of bedload transport was similar(t-test, p=0.05) in most of the windthrow-affected and control catchments. The mapping of channels revealed many cases of root plates fallen into a channel and pits created near a channel. A significant amount of woody debris delivered into the channels influenced the activity of fluvial processes by creating alternating zones of erosion and accumulation.  相似文献   

19.
A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas. Experimental studies were performed to determine the characteristics of viscous debris flow in a drainage channel of this type with a slope of 15%. The velocity and depth of the viscous debris flow were measured, processed, and subsequently used to characterize the viscous debris flow in the drainage channel. Observations of this experiment showed that the surface of the viscous debris flow in a smooth drainage channel was smoother than that of a similar debris flow passing through the energy dissipation section in a channel of the new type studied here. However, the flow patterns in the two types of channels were similar at other points. These experimental results show that the depth of the viscous debris flow downstream of the energy dissipation structure increased gradually with the length of the energy dissipation structure. In addition, in the smooth channel, the viscous debris-flow velocity downstream of the energy dissipation structure decreased gradually with the length of the energy dissipation structure. Furthermore, the viscous debris-flow depth and velocity were slightly affected by variations in the width of the energy dissipation structure when the channel slope was 15%. Finally, the energy dissipation ratio increased gradually as the length and width of the energy dissipation structure increased; the maximum energy dissipation ratio observed was 62.9% (where B = 0.6 m and L/w = 6.0).  相似文献   

20.
In this paper, the finite element analysis software ABAQUS is used to analyze the ultimate bearing capacity of three-dimensional rectangular footing of marine structures. The deformation law and the failure mode of homogeneous seabed soil beneath the rectangular footing are analyzed in detail. According to the equivalent plastic strain of soil under rectangular footing, an allowable velocity field of homogeneous seabed soil is reasonably constructed. Based on the plastic limit analysis theory of soil mass and by using the Mohr-Coulomb yield criterion, an upper bound solution of the ultimate bearing capacity of three-dimensional rectangular footing on general homogeneous seabed soil is derived, and a correction factor of ultimate bearing capacity of three-dimensional rectangular footing is given. To verify the rationality and applicability of this theoretical solution, some numerical solutions are achieved using the general-purpose FEM analysis package ABAQUS, and comparisons are made among the derived upper bound solution, the solution of Vesic, and the solution of Salgado et al. The results indicate that the upper bound solution of the three-dimensional shallowly embedded rectangular footing proposed in this paper is accurate in calculating the bearing capacity of homogeneous seabed soil. For undrained saturated clay foundation and sandy foundation with smaller internal friction angle, this upper bound solution can evaluate the ultimate bearing capacity of rectangular footing; with the gradual increase of the internal friction angle of the soil, the ultimate bearing capacity of the proposed upper bound solution is slightly higher than that of the rectangular footing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号