首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of soil–structure interaction (SSI) while designing the liquid column damper (LCD) for seismic vibration control of structures have been presented in this study. The formulation for the input–output relation of a flexible‐base structure with attached LCD has been presented. The superstructure has been modelled by a single‐degree‐of‐freedom (SDOF) system. The non‐linearity in the orifice damping of the LCD has been replaced by equivalent linear viscous damping by using equivalent linearization technique. The force–deformation relationships and damping characteristics of the foundation have been described by complex valued impedance functions. Through a numerical stochastic study in the frequency domain, the various aspects of SSI on the functioning of the LCD have been illustrated. A simpler approach for studying the LCD performance considering SSI, using an equivalent SDOF model for the soil–structure system available in literature by Wolf (Dynamic Soil–Structure Interaction. International Series in Civil Engineering and Engineering Mechanics. Prentice‐Hall: Englewood Cliffs, NJ, 1985) has also been presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
To simplify the consideration of the soil-structure interaction (SSI) effects, a single degree-of-freedom (SDOF) replacement oscillator has been successfully utilized to represent an SSI system with SDOF structural model. In the present paper, this approximation is first extended to an equivalent fixed-base model with modified system parameters. Based on this generalization, a methodology is then proposed to determine the equivalent fixed-base models of a general multi degree-of-freedom SSI system using simple system identification techniques in the frequency domain. Various fixed-base models are formulated and their accuracy is compared for a five-story shear building resting on soft soil. It is shown that the actual SSI system can be accurately represented with an appropriate fixed-base model.  相似文献   

3.
The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil.However,it is often customary to idealize the soil as rigid during the analysis of such structures.In this paper,seismic response time history analyses of base-isolated buildings modelled as linear single degree-of-freedom(SDOF) and multi degree-of-freedom(MDOF) systems with linear and nonlinear base models considering and ignoring the flexibility of supporting soil are conducted.The flexibility of supporting soil is modelled through a lumped parameter model consisting of swaying and rocking spring-dashpots.In the analysis,a large number of parametric studies for different earthquake excitations with three different peak ground acceleration(PGA) levels,different natural periods of the building models,and different shear wave velocities in the soil are considered.For the isolation system,laminated rubber bearings(LRBs) as well as high damping rubber bearings(HDRBs) are used.Responses of the isolated buildings with and without SSI are compared under different ground motions leading to the following conclusions:(1) soil flexibility may considerably influence the stiff superstructure response and may only slightly influence the response of the flexible structures;(2) the use of HDRBs for the isolation system induces higher structural peak responses with SSI compared to the system with LRBs;(3) although the peak response is affected by the incorporation of soil flexibility,it appears insensitive to the variation of shear wave velocity in the soil;(4) the response amplifications of the SDOF system become closer to unit with the increase in the natural period of the building,indicating an inverse relationship between SSI effects and natural periods for all the considered ground motions,base isolations and shear wave velocities;(5) the incorporation of SSI increases the number of significant cycles of large amplitude accelerations for all the stories,especially for earthquakes with low and moderate PGA levels;and(6) buildings with a linear LRB base-isolation system exhibit larger differences in displacement and acceleration amplifications,especially at the level of the lower stories.  相似文献   

4.
Inelastic displacement ratios (IDRs) of nonlinear soil–structure interaction (SSI) systems located at sites with cohesive soils are investigated in this study. To capture the effects of inelastic cyclic behavior of the supporting soil, the Beam on Nonlinear Winkler Foundation (BNWF) model is used. The superstructure is modeled using an inelastic single-degree-of-freedom (SDOF) system model. Nonlinear SSI systems representing various combinations of unconfined compressive strengths and shear wave velocities are considered in the analysis. A set of strong ground motions recorded at sites with soft to stiff soils is used for considering the record-to-record variability of IDRs. It is observed that IDRs for nonlinear SSI systems are sensitive to the strength and the stiffness properties of both the soil and the structure. For the case of SSI systems on the top of cohesive soils, the compressive strength of the soil has a significant impact on the IDRs, which cannot be captured by considering only the shear wave velocity of the soil. Based on the results of nonlinear time-history analysis, a new equation is proposed for estimating the mean and the dispersion of IDRs of SSI systems depending on the characteristic properties of the supporting soil, dimensions of the foundation, and properties of the superstructure. A probabilistic framework is presented for the performance-based seismic design of SSI systems located at sites with cohesive soils.  相似文献   

5.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

6.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

7.
采用波函数展开法,通过SH波入射均匀半空间中二维埋置半圆形刚柔复合基础-单质点模型,推导土-刚柔复合基础-上部结构动力相互作用的解析解,并验证解的正确性。研究表明:基础柔性对于系统响应峰值与系统频率有较大影响。考虑基础柔性后,上部结构相对响应峰值相比全刚性基础结果均有一定减小,且系统频率也会产生向低频偏移的现象。  相似文献   

8.
本文设计实现了分层土-基础-高层框架结构相互作用体系的振动台模型试验,再现了地震动激励下上部结构和基础的震害现象和砂质粉土的液化现象。通过试验,研究了相互作用体系地震动反应的主要规律:由于动力相互作用的影响,软土地基中相互作用体系的频率小于不考虑结构-地基相互作用的结构频率,而阻尼比则大于结构材料阻尼比;体系的振型曲线与刚性地基上结构的振型曲线明显不同,基础处存在平动和转动。土层传递振动的放大或减振作用与土层性质、激励大小等因素有关,砂土层一般起放大作用,砂质粉土层一般起减振隔振作用;由于土体的隔震作用,上部结构接受的振动能量较小,各层反应均较小。上部结构顶层加速度反应组成取决于基础转动刚度、平动刚度和上部结构刚度的相对大小。  相似文献   

9.
In this paper, the effects of pulse period associated with near‐field ground motions on the seismic demands of soil–MDOF structure systems are investigated by using mathematical pulse models. Three non‐dimensional parameters are employed as the crucial parameters, which govern the responses of soil–structure systems: (1) non‐dimensional frequency as the structure‐to‐soil stiffness ratio; (2) aspect ratio of the superstructure; and (3) structural target ductility ratio. The soil beneath the superstructure is simulated on the basis of the Cone model concept. The superstructure is modeled as a nonlinear shear building. Interstory drift ratio is selected as the main engineering demand parameter for soil–structure systems. It is demonstrated that the contribution of higher modes to the response of soil–structure system depends on the pulse‐to‐interacting system period ratio instead of pulse‐to‐fixed‐base structure period ratio. Furthermore, results of the MDOF superstructures demonstrate that increasing structural target ductility ratio results in the first‐mode domination for both fixed‐base structure and soil–structure system. Additionally, increasing non‐dimensional frequency and aspect ratio of the superstructure respectively decrease and increase the structural responses. Moreover, comparison of the equivalent soil–SDOF structure system and the soil–MDOF structure system elucidates that higher‐mode effects are more significant, when soil–structure interaction is taken into account. In general, the effects of fling step and forward directivity pulses on activating higher modes of the superstructure are more sever in soil–structure systems, and in addition, the influences of forward directivity pulses are more considerable than fling step ones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This note is an extension of earlier works that presented probability distribution functions for amplitudes of the peaks (the highest, the second highest … the m-th highest) in response of deterministic single degree-of-freedom (SDOF) and multi degree-of-freedom (MDOF) structures to ground motion, with deterministic Fourier spectrum and duration. It shows how these probability distribution functions can be evaluated if the Fourier spectrum and duration of the excitation are random variables specified via distribution functions. Two cases are considered: (l) when the structural model is deterministic, and (2) when the modal frequencies are random variables. The procedure presented here approximates the transfer function of the structural response by Dirac delta functions at the modal frequencies, and is applicable to multi-storey buildings with small modal damping, and with natural frequencies that are not too close. The resulting probability distribution functions are needed in seismic hazard calculations of peak response amplitudes of SDOF and MDOF structures that will not be exceeded with given confidence during the service time of the structure from any earthquake at all known faults within certain distance from the structure.  相似文献   

11.
This paper is devoted to investigate the effects of near‐fault ground motions on the seismic responses of nonlinear MDOF structures considering soil‐structure interaction (SSI). Attempts are made to take into account the effects of different frequency‐content components of near‐fault records including pulse‐type (PT) and high‐frequency (HF) components via adopting an ensemble of 54 near‐fault ground motions. A deep sensitivity analysis is implemented based on the main parameters of the soil‐structure system. The soil is simulated based on the Cone model concept, and the superstructure is idealized as a nonlinear shear building. The results elucidate that SSI has approximately increasing and mitigating effects on structural responses to the PT and HF components, respectively. Also, a threshold period exists above which the HF component governs the structural responses. As the fundamental period of the structure becomes shorter and structural target ductility reduces, the contribution of the HF component to the structural responses increases, elaborately. Soil flexibility makes the threshold period increase, and the effect of the PT component becomes more significant than the HF one. In the case of soil‐structure system, slenderizing the structure also increases this threshold period and causes the PT component to be dominant. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A methodology is developed in this paper to include soil–structure interaction effects in optimal structural control, General Multi-Degree-Of-Freedom (MDOF) structural models are considered. The SSI transfer functions for ground motion and control force in the physical space are presented first, followed by a methodology for using system identification techniques to find an equivalent fixed-base model of an MDOF SSI system. An iterative technique is applied to combine these methods for the determination of optimal control gains. The control effectiveness of considering soil–structure interaction is investigated for the controlled SSI system. It is found that the control algorithm considering SSI effects is more effective than the corresponding control algorithm assuming a fixed-base system model. In addition, the advantage of applying this methodology is observed to be more prominent in the cases where the SSI effects are more significant. © 1997 by John Wiley & Sons, Ltd.  相似文献   

13.
对多自由度体系应用小波分解的地震激励,将地震动总输入能量表示为不同频段地震动输入能量的叠加.与单自由度体系相比,多自由度体系应用小波分解会产生较大的误差,这并不影响研究小波分解后各频段对单一固有振型输入能量的贡献.这样可以从频率的角度分析多自由度体系的地震动输入能量.  相似文献   

14.
This paper investigates the non-linear seismic behavior of structures such as slender unreinforced masonry shear walls or precast post-tensioned reinforced concrete elements, which have little hysteretic energy dissipation capacity. Even if this type of seismic response may be associated with significant deformation capacity, it is usually not considered as an efficient mechanism to withstand strong earthquakes. The objective of the investigations is to propose values of strength reduction factors for seismic analysis of such structures. The first part of the study is focused on non-linear single-degree-of-freedom (SDOF) systems. A parametric study is performed by computing the displacement ductility demand of non-linear SDOF systems for a set of 164 recorded ground motions selected from the European Strong Motion Database. The parameters investigated are the natural frequency, the strength reduction factor, the post-yield stiffness ratio, the hysteretic energy dissipation capacity and the hysteretic behavior model (four different hysteretic models: bilinear self-centring, with limited or without energy dissipation capacity, modified Takeda and Elastoplastic). Results confirm that the natural frequency has little influence on the displacement ductility demand if it is below a frequency limit and vice versa. The frequency limit is found to be around 2 Hz for all hysteretic models. Moreover, they show that the other parameters, especially the hysteretic behavior model, have little influence on the displacement ductility demand. New relationships between the displacement ductility demand and the strength reduction factor for structures having little hysteretic energy dissipation capacity are proposed. These relationships are an improvement of the equal displacement rule for the considered hysteretic models. In the second part of the investigation, the parametric study is extended to multi-degree-of-freedom (MDOF) systems. The investigation shows that the results obtained for SDOF systems are also valid for MDOF systems. However, the SDOF system overestimates the displacement ductility demand in comparison to the corresponding MDOF system by approximately 15%.  相似文献   

15.
The determination of displacement demands for masonry buildings subjected to seismic action is a key issue in the performance-based assessment and design of such structures. A technique for the definition of single-degree-of-freedom (SDOF) nonlinear systems that approximates the global behaviour of multi-degree-of-freedom (MDOF) 3D structural models has been developed in order to provide useful information on the dependency of displacement demand on different seismic intensity measures. The definition of SDOF system properties is based on the dynamic equivalence of the elastic properties (vibration period and viscous damping) and on the comparability with nonlinear hysteretic behaviour obtained by cyclic pushover analysis on MDOF models. The MDOF systems are based on a nonlinear macroelement model that is able to reproduce the in-plane shear and flexural cyclic behaviour of pier and spandrel elements. For the complete MDOF models an equivalent frame modelling technique was used. The equivalent SDOF system was modelled using a suitable nonlinear spring comprised of two macroelements in parallel. This allows for a simple calibration of the hysteretic response of the SDOF by suitably proportioning the contributions of flexure-dominated and shear-dominated responses. The comparison of results in terms of maximum displacements obtained for the SDOF and MDOF systems demonstrates the feasibility and reliability of the proposed approach. The comparisons between MDOF and equivalent SDOF systems, carried out for several building prototypes, were based on the results of time-history analyses performed with a large database of natural records covering a wide range of magnitude, distance and local soil conditions. The use of unscaled natural accelerograms allowed the displacement demand to be expressed as a function of different ground motion parameters allowing for the study of their relative influence on the displacement demand for masonry structures.  相似文献   

16.
基于结构能量分析的抗震设计新方法的研究   总被引:7,自引:0,他引:7  
概要介绍了多自由度结构能量分析方法,根据单自由度体系得到的输入能量谱,研究分析了多自由度与单自由度输入能量和耗能的等效性问题,并对一座钢筋混凝土框架结构算例进行了能量计算,对计算结果进行了分析,为能量分析设计方法应用于结构抗震设计进行有益的探索。  相似文献   

17.
It is well-known that the responses of a structure are different when subjected to a static load or a sudden step load. The dynamic amplification factor (DAF), which is defined as the ratio of the amplitude of the vibratory response to the static response, is normally used to depict the dynamic effect. For a single-degree-of-freedom system (SDOF) subjected to a sudden dynamic load, the maximum value of DAF is 2. Many design guidelines therefore use 2 as an upper bound to consider the dynamic effect. For a civil engineering structure, which is normally a multiple-degrees-of-freedom (MDOF) system, the DAF may exceed 2 in certain circumstances. The adoption of 2 as the upper bond as suggested by the design guidelines therefore may lead to unsafe structural design. Very limited studies systematically investigate the DAF of a MDOF system. This study theoretically investigates the DAF of a MDOF system when it is subjected to a step load based on the fundamental theory of structural dynamics. The condition on which the DAF may exceed 2 is defined. Two numerical examples and one experimental study of a cable-stayed bridge subjected to sudden cable loss are presented to illustrate the problem.  相似文献   

18.
An innovative approximate method is presented to consider the plan asymmetry, nonlinear structural behaviour and soil-structure interaction (SSI) effects simultaneously. The proposed method so-called Flexible base 2DMPA (F2MPA) is an extension of 2 degrees of freedom modal pushover analysis (2DMPA) approach to consider foundation flexibility in seismic response analysis of plan asymmetric structures which itself were developed based on Uncoupled Modal Response History Analysis method for inelastic fixed-base asymmetric structures. In F2MPA for each mode shape using 2DMPA procedure, the elastic and inelastic properties of 2DOF modal systems corresponding to the fixed-base structure are initially derived. Then in each time step, displacements and inelastic restoring forces of the superstructure are computed from modal equations of the flexibly-supported structure. In each time step, the nonlinear secant stiffness matrix corresponding to the n-th MDOF modal equations of soil-structure system is updated using the corresponding modal 2DOF system of fixed-base structure. To update the transformed modal stiffness matrix of the SSI system, this matrix is partitioned and it is assumed that the non-linear variation of the superstructure can be estimated from the variation of modal stiffness matrix of the fixed-base structure. Accuracy of the proposed method was verified on an 8-story asymmetric-plan building under different seismic excitations. The results obtained from F2MPA method were compared with those obtained by nonlinear response history analysis of the asymmetric soil-structure system as a reference response. It was shown that the proposed approach could predict the results of the nonlinear time history analysis with a good accuracy. The main advantage of F2MPA is that this method is much less time-consuming and useful for the practical aims such as massive analysis of a nonlinear structure under different records with multiple intensity levels.  相似文献   

19.
The elastodynamic response of coupled soil-pile-structure systems to seismic loading is studied using rigorous three-dimentional (3D) finite element models. The system under investigation comprises of a single pile supporting a single degree of freedom (SDOF) structure founded on a homogeneous viscoelastic soil layer over rigid rock. Parametric analyses are carried out in the frequency domain, focusing on the dynamic characteristics of the structure, as affected by typical foundation properties such as pile slenderness and soil-pile relative stiffness. Numerical results demonstrate the strong influence on effective natural SSI period of the foundation properties and the crucial importance of cross swaying-rocking stiffness of the pile. Furthermore, the notion of a pseudo-natural SSI frequency is introduced, as the frequency where pile-head motion is minimized with respect to free field surface motion. Dynamic pile bending is examined and the relative contributions of kinematic and inertial interaction, as affected by the frequency content of input motion, are elucidated.  相似文献   

20.
Seismic isolation of buildings with sliding concave foundation (SCF)   总被引:1,自引:0,他引:1  
In this paper, a new base isolation system, namely the sliding concave foundation (SCF), is introduced and the behaviour of the buildings using such a system is theoretically investigated. A building supported on the new system behaves like a compound pendulum during seismic excitation. The pendulum behaviour accompanied by the large radius of foundation curvature shifts the fundamental period of the system to a high value (e.g. more than 8sec), in a frequency range where none of the previously recorded earthquakes had considerable energy. This results in a large decrease in the structural responses. Since small friction forces are essential on the contact surfaces, PTFE sheets can be used as sliding surfaces. Although the pure frictional sliding systems have the same efficiency as the SCF, in reducing the responses of the superstructure, the main advantage of the new system is a significant decrease in sliding displacement. The performance of the SCF subjected to a number of harmonic and non‐harmonic base excitations is studied and its ability to reduce the structural responses is examined. Some numerical examples are solved for a single‐degree‐of‐freedom (SDOF) structure and the responses are compared with the responses of the same SDOF structure on a fixed base or a pure frictional sliding support system. The comparisons confirm the effectiveness of the new system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号