首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coulomb damping can be utilized effectively to reduce the dynamic response of structures subjected to seismic ground motions. To activate this damping, some parts of a vibrating structure are allowed to slide at rough interfaces. The dynamic response of structures provided with sliding interfaces at the base, between a floor slab and frame and in the cross bracings of a frame has been examined recently. In this paper, a simple slab sliding system provided with a spring to introduce a recovery mechanism and to reduce the sliding displacement requirement for low frequency structures has been examined. The equations of motion for this system are developed. An approach is presented to solve these coupled equations for earthquake induced ground motions. Structures with varying frequency and friction characterisics are considered and the numerical results are presented in response spectrum form. It is observed that, in low frequency structures, provision of a rather weak spring can reduce the sliding displacement requirements without significantly increasing the forces in the supporting frame and the acceleration input to supported secondary systems.  相似文献   

2.
Numerical simulations and parametric studies have been used to investigate the influence of potential poundings of seismically isolated buildings with adjacent structures on the effectiveness of seismic isolation. Poundings are assumed to occur at the isolation level between the seismically isolated building and the surrounding moat wall. After assessing some common force‐based impact models, a variation of the linear viscoelastic impact model is proposed to avoid tensile impact forces during detachment, while enabling the consideration of permanent plastic deformations at the vicinity of the impact. A large number of numerical simulations of seismically isolated buildings with different characteristics have been conducted under six earthquake excitations in order to investigate the influence of various design parameters and conditions on the peak floor accelerations and interstorey deflections during poundings. The numerical simulations demonstrate that poundings may substantially increase floor accelerations, especially t the base floor where impacts occur. Higher modes of vibration are excided during poundings, increasing the interstorey deflections, instead of retaining an almost rigid‐body motion of the superstructure, which is aimed with seismic isolation. Impact stiffness seems to affect significantly the acceleration response at the isolation level, while the displacement response is more insensitive to the variation of the impact stiffness. Finally, the results indicate that providing excessive flexibility at the isolation system to minimize the floor accelerations may lead to a building vulnerable to poundings, if the available seismic gap is limited. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Seismic isolation is one of the effective methods to protect equipments. It helps to keep seismic response accelerations in equipment below its allowable limits. Among different types of isolation systems, the combination of restoring spring and slider, also called as resilient sliding isolation (RSI) system, is the one which has been effectively used for protection of equipment. Principal design parameters for this type of isolation system are period of system (stiffness of spring) and friction coefficient of slider. There may be number of combinations of these design parameters which can enable the isolated equipment to remain functional during and after the predicted seismic event. The optimum design of RSI system can be considered as the one which maintains the response acceleration in the equipment below its allowable limit and at the same time keeps the relative displacement between floor and the equipment to the minimum. This study deals with optimum design of resilient sliding system. First the RSI system is modeled analytically by (i) precise and (ii) simplified SDOF models. The accuracy of the model is then validated by shaking table tests. The validated simplified SDOF model is then used to determine optimum design parameters for different levels of allowable accelerations. Results show that the optimum period decreases and the optimum friction coefficient increases with higher allowable acceleration.  相似文献   

4.
This paper evaluates the ability of simplified superstructure models, including two shear frame models and a single-story model, in predicting global responses of a full-scale five-story steel moment-frame buildings isolated by triple friction pendulum bearings subjected to earthquake motions. The investigated responses include displacement of the isolation system, roof drift, story drift, and floor acceleration. Mechanical properties of the simplified superstructure models were derived from the modal information of a verified full 3-D model. The comparison between the analytical responses and experimental responses shows that the simplified models can well predict the displacement of the isolation system. Furthermore, the shear-frame models are adequate for predicting floor acceleration when the specimen is subjected to horizontal ground motions. However, when the specimen is subjected to 3-D motions, the shear-frame models un-conservatively predict floor acceleration. The full 3-D model improves the prediction of story drift compared with the simplified models for both horizontal and 3-D motions.  相似文献   

5.
In the present study, the seismic behavior of steel–concrete composite structures isolated by base-isolation devices under near-fault earthquake excitations is numerically investigated. The seismic analysis is performed by means of the static non-linear (pushover) analysis procedure conducted on two five-storey three-dimensional (3-D) buildings with steel columns and steel–concrete composite slabs and beams. The present 3-D building examples are assumed to be located at a near-fault area in order to take into account the effect of strong ground motion on the isolation devices. The results of this study allowed the verification of the adequacy of the attachment isolation system as well as the comparison of the behavior of the seismic-protected building with or without bracings to the unprotected buildings with or without bracings, showing the benefits of the application of the isolation devices, the limitations and the characteristics of their performance.  相似文献   

6.
An experimental investigation on a base isolation system incorporating stainless steel–Teflon bearings as sliders, and pressurized fluid viscous spring dampers, is presented in this paper. In the system examined, dampers are connected to the base floor of an isolated building to provide the desired passive control of response in the superstructure, as well as to guarantee that it re‐centres completely after the termination of a seismic action. Two types of experiments were conducted: sinusoidal and random cyclic tests, and a pseudodynamic test in ‘substructured’ configuration. The cyclic tests were aimed at characterizing what follows: the hysteretic and strain‐rate‐dependent response of the considered highly non‐linear spring dampers; the normal pressure‐ and strain‐rate‐dependent frictional behaviour of steel–Teflon bearings, manufactured in compliance with the latest standards for this class of sliders; and the combined response of their assembly. The pseudodynamic test simulated the installation of the protection system at the base of a 2:3‐scale three‐storey steel frame structure, already tested in unprotected conditions by an earlier experimental campaign. Among other findings, the results of the performed tests, as well as of relevant mechanical interpretation and numerical simulation analyses, confirmed the linear additive combination of the dissipative actions of spring dampers and sliders in this mixed installation, and the high protective performance of the considered base isolation/supplemental damping system in a realistic earthquake simulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Base‐isolation is regarded as one of the most effective methods for protecting the structural and nonstructural building elements from design level horizontal earthquake ground shaking. However, base‐isolation as currently practiced does not offer unlimited protection for these buildings, especially when the ground shaking includes a strong vertical component. The vulnerability of nonstructural systems in a base‐isolated building was made evident during recent shake table testing of a full‐scale five‐story base‐isolated steel moment frame where nonstructural system damage was observed following tests including vertical excitation. Past research efforts have attempted to achieve 3D isolation of buildings and nuclear structures by concentrating both the horizontal and vertical flexibility at the base of the building that are either quite limited or not economically viable. An approach whereby the vertical flexibility is distributed up the height of the building superstructure to passively reduce vertical acceleration demands in base‐isolated buildings is presented. The vertical flexibility is achieved by placing laterally restrained elastomeric ‘column’ bearings at one or more floor levels along the height of the building. To broadly investigate the efficacy of the vertically distributed flexibility concept and the trade‐off between mitigation and cost, a multi‐objective optimization study was conducted considering 3‐story, 9‐story, and 20‐story archetype buildings that aimed to minimize the median peak vertical floor acceleration demands and to minimize the direct cost of column bearings. Based on the results of the optimization study, a practical rule for determining the number of levels and locations of column bearings is proposed and evaluated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Optimum isolation damping for minimum acceleration response of base-isolated structures subjected to stationary random excitation is investigated. Three linear models are considered to account for the energy dissipation mechanism of the isolation system: a Kelvin element, a linear hysteretic element and a standard solid linear element, commonly used viscoelastic models for isolation systems comprising natural rubber bearings and viscous dampers. The criterion selected for optimality is the minimization of the mean-square floor acceleration response. The effects of the frequency content of the excitation and superstructure properties on the optimum damping and on the mean-square acceleration response are addressed. The study basically shows that the attainable reduction in the floor acceleration largely depends on the energy dissipation mechanism assumed for the isolation system as well as on the frequency content of the ground acceleration process. Special care should be taken in accurately modelling the mechanical behaviour of the energy dissipation devices.  相似文献   

9.
In seismic base isolation, most of the earthquake‐induced displacement demand is concentrated at the isolation level, thereby the base‐isolation system undergoes large displacements. In an attempt to reduce such displacement demand, this paper proposes an enhanced base‐isolation system incorporating the inerter, a 2‐terminal flywheel device whose generated force is proportional to the relative acceleration between its terminals. The inerter acts as an additional, apparent mass that can be even 200 times higher than its physical mass. When the inerter is installed in series with spring and damper elements, a lower‐mass and more effective alternative to the traditional tuned mass damper (TMD) is obtained, ie, the TMD inerter (TMDI), wherein the device inertance plays the role of the TMD mass. By attaching a TMDI to the isolation floor, it is demonstrated that the displacement demand of base‐isolated structures can be significantly reduced. Due to the stochastic nature of earthquake ground motions, optimal parameters of the TMDI are found based on a probabilistic framework. Different optimization procedures are scrutinized. The effectiveness of the optimal TMDI parameters is assessed via time history analyses of base‐isolated multistory buildings under several earthquake excitations; a sensitivity analysis is also performed. The enhanced base‐isolation system equipped with optimal TMDI attains an excellent level of vibration reduction as compared to the conventional base‐isolation scheme, in terms not only of displacement demand of the base‐isolation system but also of response of the isolated superstructure (eg, base shear and interstory drifts); moreover, the proposed vibration control strategy does not imply excessive stroke of the TMDI.  相似文献   

10.
为研究AP1000核电厂基底隔震性能,设计了缩尺比为1/40的AP1000核电厂模型结构,进行了AP1000核电厂模型基底隔震振动台试验。试验中采用铅芯橡胶隔震支座进行隔震,并选取RG1.60人工波、El Centro波和Kobe波作为地震动输入。本文从加速度响应、楼层加速度反应谱、加速度峰值放大系数、减震率等方面对隔震与非隔震核电厂结构的地震响应特性进行了研究。试验结果表明:隔震能明显减小上部结构水平向加速度响应和加速度反应谱峰值,而在隔震频率处隔震模型加速度反应谱有所增加;隔震模型由于摇摆效应在隔震频率处的水平向楼层加速度反应谱随楼层高度的升高先减小后增大;在三向输入地震动作用下,隔震和非隔震AP1000模型各楼层在竖向基频附近的竖向加速度反应谱较竖向输入的地震动放大较为明显。  相似文献   

11.
An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.  相似文献   

12.
Curved surface sliding bearings, which are usually called as friction pendulum system (FPS) are commonly used for base isolation of liquid storage tanks since the period of the isolation system is independent of the storage level. However the restoring force and the damping at the isolation system are functions of axial load which changes during an earthquake excitation. This change might be in appreciable amounts especially for the tanks with high aspect ratios. The present paper focuses on earthquake performances of both broad and slender tanks base isolated by FPS bearings. The effects of overturning moment and vertical acceleration on axial load variation at the bearings are considered. The efficiency of the isolation system is investigated by analyzing the effects of various parameters such as; (i) isolation period, (ii) tank aspect ratio and (iii) coefficient of friction. The Haroun and Housner's three-degrees-of-freedom lumped mass model was used to solve the governing equations of motion in which convective, impulsive and rigid masses were included. A number of selected ground motions were considered and the results were compared to those of non-isolated cases.As a result, base isolation was found to be effective in reducing the base shear values for both broad and slender tanks without significantly affecting the sloshing displacements of the broad ones. The efficiency was even more pronounced for slender tanks subjected to near fault ground motions for isolation periods above 3 s. This specific value of isolation period also eliminated possible design problems arising from under-estimation of base shear values (up to 40%) due to ignoring the effects of axial load variation in lower isolation periods. Overturning effects should not be ignored especially for tanks with high aspect ratios (S) and being subjected to near fault ground motion.  相似文献   

13.
带钢筋及钢骨暗支撑剪力墙抗震性能试验研究   总被引:12,自引:3,他引:9  
选取剪力墙结构体系中较为薄弱的抗震构件“一”形剪力墙,进行了3个1/3缩尺的带钢筋、钢骨暗支撑剪力墙以及普通RC剪力墙构件的低周反复荷载试验,比较分析了它们的承载力、刚度、延性、滞回特性、耗能能力及破坏机制,并提出抗震设计建议。  相似文献   

14.
For the public welfare and safety, buildings such as hospitals, industrial facilities, and technology centers need to remain functional at all times; even during and after major earthquakes. The values of these buildings themselves may be insignificant when compared to the cost of loss of operations and business continuity. Seismic isolation aims to protect both the integrity and the contents of a structure. Since the tolerable acceleration levels are relatively low for continued services of vibration-sensitive high-tech contents, a better understanding of acceleration response behaviors of seismically isolated buildings is necessary. In an effort to shed light to this issue, following are investigated via bi-directional time history analyses of seismically isolated benchmark buildings subject to historical earthquakes: (i) the distribution of peak floor accelerations of seismically isolated buildings subject to seismic excitations in order to find out which floors are likely to sustain the largest accelerations; (ii) the influence of equivalent linear modeling of isolation systems on the floor accelerations in order to find out the range of possible errors introduced by this type of modeling; (iii) the role of superstructure damping in reducing floor accelerations of seismically isolated buildings with flexible superstructures in order to find out whether increasing the superstructure damping helps reducing floor accelerations notably. Influences of isolation system characteristics and superstructure flexibility are both taken into account.  相似文献   

15.
Vibration isolation is well recognized as an effective mitigation strategy for acceleration‐sensitive equipment subjected to earthquake. In the present paper, an equipment isolation system with nonlinear hysteretic behaviour is proposed and a methodology for the optimal design is developed. An integrable constitutive model, derived from the mathematical Duhem hysteresis operator, is adopted for the isolation system. The optimization procedure is defined through a dual‐criteria approach that involves a transmissibility criterion combined with an energy performance criterion: the former consists in limiting the absolute acceleration of the isolated equipment below an allowable threshold value; the latter, in maximizing the ratio between the energy dissipation due to hysteresis and the input energy to reduce the isolator displacements. The seismic effectiveness of the nonlinear hysteretic isolation system is numerically investigated under natural accelerograms with different frequency content and increasing levels of excitation. Both ground‐mounted and floor‐mounted equipment items are considered in the analyses; in the second case, the dynamic interaction between the equipment and its supporting structure is taken into account in the design of the isolation system, and its effects on the isolation performance and the structural response are discussed. Comparisons in terms of effectiveness and robustness with a linear isolation system with viscoelastic behaviour are eventually provided. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
内圆外方复合钢管混凝土短柱轴压承载力试验研究   总被引:2,自引:0,他引:2  
为研究内圆外方复合钢管混凝土柱的轴压承载力,完成了10个试件的轴心受压试验。试验结果表明:达到峰值承载力时,方钢管纵向已屈服、横向尚未屈服;试件的破坏形态为方钢管向外鼓曲、沿纵向局部撕裂,方钢管与圆钢管之间的混凝土已经酥松、局部压碎;大部分试件即使纵向平均压应变达到0.11,尚能承担不小于其峰值承载力70%的轴力;压缩刚度的计算值平均为实测值的83.6%。采用钢管仅提供轴压承载力、不提供横向约束的假定计算得到的试件的轴压承载力,与试验结果符合最好。  相似文献   

17.
主动隔振系统具有隔振频带宽,能够在低频处取得较好隔振效果的优点,因而成为研究的热点。基于单级弹簧主动隔振系统建立数学模型,着重分析了系统位移反馈、速度反馈和加速度反馈3种反馈量对系统隔振性能的影响。结果表明:位移反馈使系统固有角频率提高,低频处隔振效果增强,而高频处隔振效果略有降低;速度反馈使系统在固有角频率附近的隔振效果有很好的改善,但是在其他频段的隔振效果基本没有变化;加速度反馈使得系统固有角频率减小,并且在高频段的隔振效果增加。这对主动隔振系统控制器的设计具有实际指导意义。  相似文献   

18.
通过2根圆钢管普通混凝土柱与5根圆钢管钢渣混凝土柱在高轴压比下的水平低周反复加载试验,研究圆钢管钢渣混凝土柱的轴压比、钢管壁厚、钢渣砂替代率和长细比对其破坏形态、滞回耗能能力、骨架曲线、延性及耗能、刚度退化的影响规律。研究结果表明:钢渣混凝土试件破坏过程和破坏形态与普通混凝土试件基本相同,主要表现为钢管底部鼓曲的压弯破坏;所有试件滞回曲线饱满,无明显“捏缩”现象;高轴压比试件存在明显承载力突降现象,合理的径厚比(钢管直径/钢管壁厚)对高轴压比试件承载力突降有明显改善作用;低轴压比试件延性系数大于4.0,高轴压比试件延性系数介于1.57~3.76之间,轴压比增大,试件延性下降;试件破坏时等效粘滞阻尼系数ξeq介于0.259~0.437之间;建议采用《钢管混凝土混合结构技术标准》(GB/T51446-2021)或《钢管混凝土结构技术规程》(DBJ/T13-51-2010)计算地震作用下钢管钢渣混凝土柱压弯承载力,但高轴压比钢管钢渣混凝土柱计算结果需乘以折减系数0.8。  相似文献   

19.
Research studies on the damped cable system (DCS) for seismic protection of frame structures are presented in this paper and the accompanying one. This technology includes prestressed steel cables linked to pressurized fluid viscous spring‐dampers fixed to the foundation at their lower ends, and to the top floor, or one of the upper floors, at their upper ends. The cables have sliding contacts with the floor slabs, to which they are joined by steel deviators. The general characteristics of the system, as well as of the constituting spring‐dampers and cables, are initially discussed. The results of a laboratory testing campaign developed on a DCS prototype are examined, and transferred into the formulation of the finite element model of the system, conceived to be easily generated by commercial structural analysis programs. A second dynamic experimental investigation follows, concerning a pilot installation of the system on a full‐scale mock‐up building. The benefits of the protective technology are evaluated in terms of maximum displacements and accelerations, as well as of equivalent viscous damping coefficient and MDOF transmissibility ratio. Further sections of the study, including a preliminary sizing criterion of DCS, additional numerical enquiries aimed at optimizing its geometrical layout, and the application to a real case study building, are offered in the companion paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a formulation for earthquake resistant design of optimum hybrid isolation systems for sensitive equipment protection. The hybrid system under consideration consists of laminated rubber bearings, viscodampers and a set of actuators which, grounded on the main structural system, deliver forces on the basement of the isolated substructure mounted on the main structural system. An integrated design procedure for the passive and active components of the isolation system is developed aiming at acceleration reduction under random excitation. Linear models are used for the isolated structure, the main structural system and the isolation system. Fractional derivative Maxwell elements are used to model the mechanical behaviour of the viscodampers. The active component of the isolation system applies forces proportional to the absolute velocity of the isolated piece of equipment. Constraints in the deformation capacity of the isolators as well as constraints in the capacity of the actuators are considered for the design of an optimal hybrid isolation system. Simple numerical examples are developed herein to illustrate the design procedure. The superiority of hybrid systems over passive systems in reducing acceleration response is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号