首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to assess the effect of long-term cultivation and water erosion on the soil organic carbon (OC) in particle-size fractions. The study site is located at Nihegou Watershed in the Southern Loess Plateau, China. The soil at this site is loess with loose and silty structure, and contains macropores. The results showed that the OC concentrations in sediments and in the particle-size fractions of sediments were higher than those in soils and in the particle-size fractions of soils. The OC concentration was highest in the clay particles and was lowest in the sand particles. Clay particles possessed higher OC enrichment ability than silt and sand particles. The proportions of OC in the silt fractions of soil and sediment were the highest (mean value of 53.87% and 58.48%, respectively), and the total proportion of OC in the clay and silt fractions accounted for 96% and 98% of the total OC in the soil and sediment, respectively. The loss of OC was highest in silt particles, with an average value of 0.16 Mg ha^-1 y^-1, and was lowest in the sand (0.003 Mg ha^-1 y^-l). This result suggests that the fine particle-size fraction in the removed sediment may be an important indicator to assess soil OC losses.  相似文献   

2.
Soil Organic Carbon(SOC) is the most important component of soil. Though small, it determines soil fertility and prevents soil losses. In this study, we examined relationships between the Particle–Size Distribution(PSD) of the eroded sediment and SOC loss, and evaluated the effects of plant coverage ratios(0%, 15%, 30%, 45%, 60% and 90%), slope lengths(2 m, 4 m), fertilizer treatments(unfertilized control(CK), compound N–P–K fertilizer(CF), and organic fertilizer(OF)) on SOC loss and the SOC enrichment ratio(ERSOC) in the eroded sediments. The experimental results showed that longer slope length and lower surface cover ratios produced larger surface runoff and the eroded sediments, resulting in larger SOC losses. The average SOC loss was greatest in the OF treatment and SOC loss was mainly associated with the eroded sediment. Surface runoff, which causes soil erosion, is a selective transportation process, hence there were more claysized particles(2 μm) and silt-sized particles(2-50 μm) in the eroded sediments than in the original soils. SOC was enriched in the eroded sediments relative to in the original soil when ERSOC 1. ERSOC was positively correlated with ER_(clay)(2 μm)(R~2 = 0.68) and ERfine silt(2–20 μm)(R~2 = 0.63), and from all thesize particle categories of the original soil or the eroded sediments, more than 95% of SOC was concentrated in small-sized particles(50 μm). The distribution of SOC in different-sized particles of the original soil and the eroded sediment is primarily associated with clay-sized particles and fine silt-sized particles, thus we conclude that as the eroded sediment particles became finer, more SOC was absorbed, resulting in more severe SOC loss.  相似文献   

3.
Investigations and studies for years all demonstrated that there is a patch of fine-grained mud in the central area of the South Yellow Sea. However, scientists have different opinions on its material source, genesis, and sedimentation intensity. Some believe that the materials come from the Huanghe River, some think that the mud area represents the depocentre of the South Yellow Sea, and some consider it as "relict mud ". The authors ' geochemical study reveals that the mud is multi-sourced, yet the material supply is not ample, and that a little amount of fine-grained suspended materials deposited slowly under the dynamic action of a cyclonic gyre formed the modern muddy sediment, which is named "multi-source modern mud ".  相似文献   

4.
With the combination of historical data, field observations and satellite remotely sensed images(Landsat TM/ETM and CBERS), changes in Huanghe (Yellow) River estuary since 1996 when artificial Chahe distributary was built up were studied, mainly including water and sediment discharge from the river, tides, tidal currents, suspended sediment diffusion, coastline changes and seabed development. During following six and half years (up to the end of 2002), runoff and sediment loads into the river mouth declined dramatically. At the beginning of the re-routing, abundant sediment loads from the river filled up nearshore shallow water areas so that the newborn delta prograded quickly. With rapid decrease of sediment loads transported to the estuary, the delta retrograded. In 1997, subaerial tip of the abandoned delta receded 1.5km; its annual mean recession rate was about 150 m in following years. In addition, marine dynamic condition near the artificial outlet had also changed. Under the interaction of ocean and river flow, most of incoming sediment loads deposited in the vicinity of the outlet. Seabed erosion occurred at the subaqueous delta front. Between 1999 and 2002, erosion thickness averaged at 0.3 m in the subaqueous delta of 585.5 km2.  相似文献   

5.
Internal erosion occurs when fine particles escape from the soil driven by seepage flow, which is considered to be the crucial factor causing the failure of earth structures filled with gravelly soil. The objective of this paper is to suggest an appropriate method to assess internal erosion potential of gravelly soil. By analyzing the sensitivity of soil material to internal erosion, the variable(Dc15/df85)max and the content of coarse particles(Pc) are selected as the evaluation indexes(Dc15 an...  相似文献   

6.
The Huanghe (Yellow) River, with annual sediment discharge about 11 ×108tons, contributes about 17% of the fluvial sediment discharge of world's 21 major rivers to the ocean because its middle reaches flow across the great Loess Plateau of China. Sediment discharge of the Huanghe River has a widespread and profound effect on sedimentation of the sea. The remarkable shift of its outlet in 1128-1855 A.D. to the South Yellow Sea formed a large subaqueous delta and provided the substrate for an extensive submarine ridge field.The shift of its outlet in the modern delta every 10 years is the main reason why with an extremely heavy sediment input and a micro- tidal environment, the Huanghe River has not succeeded in building a birdfoot delta like the Mississippi. The Huanghe River has consistently brought heavy sediment input to sea at least since 0.7 myr.B.P. Paleochannels, paleosols, cheniers and fossils on the sea bottom indicate that the Yellow Sea was exposed during the late Quaternary glacial low-sea l  相似文献   

7.
The vertical fluxes and molar ratios of carbon, nitrogen and phosphorus of suspended particulate matter in the Yellow Sea were studied based on the analysis of suspended particulate matter,sediments and sinking particles obtained by use of moored sediment traps. The POC : PON ratios indicate that most of the particulate organic matter in the Yellow Sea water column comes from marine life rather than the continent. The vertical fluxes of SPM, POC, PON and POP in the Yellow Sea are much higher than those in other seas over the world, and present a typical pattern in shallow epicontinental seas. The estimated residence time of the bioactive elements showed that the speed of the biogeochemical process of materials in the Yellow Sea is much shorter than that in the open ocean as there was high primary productivity in this region.  相似文献   

8.
It is well known that acid-volatile sulfide (AVS) plays an important role in influencing the toxicity of divalent cationic metals within anoxic sediments. In studying sediment core samples collected from tidal flats within the Jiaozhou Bay, China, we found that the AVS concentration gradually increases with depth and decreases from high tidal flat to low tidal flat areas. We evaluated the chemical activity and bioavailability of heavy metals in the tidal flat based on the molar ratio of simultaneously extracted metals (SEM) and AVS. The value of SEM/AVS is generally less than 1 in this area except for the surface layer, which suggests that the heavy metals only have chemical activity in the surface layer. SEM is most highly concentrated at the boundary of the redox layer SEM have similar depth distributions throughout the tidal flat. The aeration of low tidal flat sediment indicates that SEM gradually move to deeper sites via interstitial water.  相似文献   

9.
The South Yellow Sea(SYS) is strongly influenced by the substantial sediment loads of the Huanghe(Yellow)(including the modern Huanghe and abandoned old Huanghe subaqueous delta) and Changjiang(Yangtze) Rivers. However,the dispersal patterns of these sediments,especially in the western SYS,have not been clearly illustrated. In this study,we have analyzed clay minerals,detrital minerals,and grain sizes for 245 surface sediment samples(0–5 cm) collected from the western SYS. The clay minerals,on average,consist of 67% illite,14% smectite,11% chlorite,and 8% kaolinite. Clay minerals,detrital minerals,and grain size analyses of surface sediments,combined with water mass hydrology analysis,reveal that sediments in the western SYS are mainly derived from the modern Huanghe River,the abandoned subaqueous delta of the old Huanghe River,some material from the Changjiang,and coastal erosion. The clay minerals(especially illite and smectite) and quartz/feldspar ratio distribution patterns,reveal that the influence of modern Huanghe sediments can reach 35°N in the northwestern part of the study area,an influence that can be enhanced especially in winter owing to northerly winds. Conversely,sediments along the Jiangsu coast are mixed,in summer,with material from the Changjiang arriving via northward flow of Changjiang Diluted Water. The Subei Coastal Current carries the refreshed sediments northward into the western SYS. Sediment distribution and transport in the western SYS are mainly controlled by the oceanic circulation system that is primarily related to the monsoon.  相似文献   

10.
Based on high-resolution analysis to a 280-cm long sediment core obtained from the muddy area in the central Yellow Sea, we examined the provenance of muddy sediments and discussed the changing marine sedimentary environment since the middle Holocene. The results indicated that fine-grained sediments in the muddy area were mainly derived from the Huanghe(Yellow River) and Changjiang(Yangtze River) with considerable stepwise variations during the past 6.6 kyr. The Yellow Sea Warm Current was initiated at 6 kyr when the sea level was high together with the enhanced East Asian Winter Monsoon. These in combination established the framework of shelf circulation in the Yellow Sea that began to trap the river-derived fine-grained sediments. From 4.9 kyr to 2.8 kyr, both the Kushiro Current and East Asian Monsoon were significantly weakened, reducing the delivery of Changjiang sediments to the muddy area. As a result, the sediments were mainly originated from the Huanghe. From 2.8 kyr to 1.5 kyr the continuously weakened East Asian Winter Monsoon and enhanced Yellow Sea Warm Current entrapped more fine-grain sediments. Whereas the enhanced East Asian Winter Monsoon and the human caused increase in sediment load of the Huanghe since 1.5 kyr, and direct delivery of Huanghe sediments to the Yellow Sea during 1128–1855 AD might dominated the sedimentation in the study area. The stepwise variations of the sediment provenance and composition of the Central Yellow Sea muddy sediments are of importance to understanding the formation of muddy deposit in the central Yellow Sea and the associated variations of marine environment since the middle Holocene.  相似文献   

11.
Clay minerals of 34 sediments collected from the northwestern continental shelf of the East China Sea have been determined by X-ray diffraction analysis. The clay mineral distribution is mainly controlled by the sediment source and the dominant circulation pattern. The predominant clay mineral in our study area is illite comprising more than 67% of the whole clay fraction. The highest concentration of illite (>68%) is found in the southeastern offshore parts beyond the reach of terrigenous input from the Jeju Island. It means that these illites are largely transported by the Kuroshio Current from the South China Sea (SCS). Smectite is highly concentrated in the northwest middle part and in the outer-shelf mud patch. It seems to be due to the high supply of smectite transported from China where fine-grained sediments are discharged from modern and ancient Huanghe (Yellow) River. The relatively high abundant kaolinite is likely derived from the Changjiang (Yangtze) River via the Taiwan Warm Current. In contrast, large amounts of chlorite and high chlorite/kaolinite ratios occur in the northwestern area, reflecting the transportation by the Yellow Sea Coastal Current from the southern Yellow Sea. The discrimination diagrams clearly show that the sediments in the northwestern East China Sea are ultimately sourced from Chinese rivers, especially from the Huanghe River, whereas the sediment in the northeast part might come from the Jeju Island. The muddy sediments of the Changjiang River’s submerged delta have much lower 87Sr/86Sr ratios (0.716 2–0.718 0) than those of the Shandong Peninsular mud wedge (0.721 6–0.724 9), which are supposed to be originated from the Huanghe River, suggesting the distribution pattern of 87Sr/86Sr ratios as a new tracer to discriminate the provenance of shelf sediments in the study area. The 87Sr/86Sr ratios of the outer-shelf muddy sediments ranged from 0.7169 to 0.7216 in a wide range and was between those of the Huanghe River and Changjiang River sediments, suggesting multiple sources of the sediment in the area.  相似文献   

12.
Filter-feeding shellfish are common benthos and significantly affect the biogeochemical cycle in the shallow coastal ecosystems.Ark clam Scapharca subcrenata is one of the widely cultured bivalve species in many coastal areas owing to its tremendous economic value.However,there is little information regarding the effects of the bioturbation of S.subcrenata on the fluxes of nutrient exchange in the sediment-water interface(SWI).In this regard,S.subcrenata was sampled during October 2016 to determine the effects of its bioturbation activity on the nutrient exchange flux of the SWI.The results showed that the biological activity of S.subcrenata could increase the diffusion depth and the rate of the nutrients exchange in the sediments.The bioturbation of S.subcrenata could allow the nutrients to permeate into the surface sediments at 6-10cm and increase the release rate of nutrients at the SWI.The releasing fluxes of DIN and PO43−-P in the culture area were found to be around three times higher than that in the non-cultured region.The culture of S.subcrenata has been proved to be an important contributor to nutrient exchange across the SWI in the farming area of Haizhou Bay.Nutrients exchange in the SWI contributes a part of 86%DIN,71%PO43−-P and 18%SiO32−-Si for the aquaculture farm.  相似文献   

13.
The implementation of the water sediment regulation scheme (WSRS) is a typical example of artificially controlling land-source input.During WSRS,the water discharge of the Yellow River will increase significantly,and so will the input of terrigenous materials.In this study,we used a natural geochemical tracer 222Rn to quantify terrestrial inputs under the influence of the2014 WSRS in the Yellow River Estuary.The results indicated that during WSRS the concentration of 222Rn ...  相似文献   

14.
The erosion mechanisms of abandoned coastal section are understood detailedly by flume experiment, which play an important role to the offshore engineering facilities. A movable-bed physical model has been used to investigate the coastal erosion of an abandoned section of the Huanghe (Yellow) River Delta. The theory of physical scale models is discussed and a method for constructing the representative seabed section is developed. The results indicate that during the period initially after the abandonment of the delta the entire bed experienced rapid erosion because the seabed was steep and prone to liquefaction that resulted from storm wave action. After this initial period, a balance of erosion and accretion was established, and the beach profile equilibrated with a point of balance present on the profile. The experimental results indicate that the volume of deposition was about half that of the erosion. Wave action may also induce significant stratal changes through its interaction with the soft seabed. The major morphological features developed in the model delta section were found to be qualitatively comparable with those observed in the prototype. A distorted modeling law that maintains the similarity of the modeled and prototype equilibrium beach profiles is proposed. Experimental results show that the distorted modeling is able to reproduce the beach-face slope in nature, and the model also successfully reproduced three historical evolutionary stages of erosion.  相似文献   

15.
As a very important component of a coastal system,tidal flats come to be a focus of the studies on land-ocean interaction in the coastal zone because those areas are subjected to intense human activities and are highly sensitive to the global change.The Quanzhou Bay,located along the middle part of Fujian coast of China,covers about 136.4km2,and the area of coastal wetland in the entire bay from intertidal to subtidal with 6m of water depth accounts for 96% of the total area.Seven short cores were collected and divided in situ with the interval of 5cm on the coastal wetlands of Quanzhou Bay on April 19,2006.The sediment samples were scattered and the grain sizes were measured by using Mastersizer 2000.Human beings' activities on tidal flat have disturbed the vertical distribution of sediments in stratigraphic sequence and accelerated the sedimentation rates.Grain size analysis results show that the grain size diameters increase and sediment becomes worse sorted towards the sea under the strong human disturbance;Spartina alterniflora can play a role of trapping the fine sediment;but near the bank,the sediment becomes coarse and there are two peak values on frequency curve influenced by the sandpile.The trough formed by human activities along the coastline changes the transport path of water and suspended sediment.The sediments are transported through the trough and deposit in it during the flood;the ebb flow is retarded by the flow output through the adjacent trough,and the deposited sediment can not be re-suspended;then,the sedimentation rate increases.In situ observation show that the sedimentation rate is about 8-10cm/yr.  相似文献   

16.
Ninety-eight clay mineral samples from the YSDP102 core were analyzed by x-ray diffractometer to study the four clay minerals: illite, chlorite, kaolinite and smectite. Twenty-eight samples had been analyzed on the laser particle-siz eanalyzer to reveal the particle features of the sediments. Distribution of the clay minerals and the particle characteristics in the YSDP102 core show that the core experienced three different depositional periods and formed three different sedimentary intervals due to different sediment sources and different depositional environments. Features of the clay minerals and the heavy minerals in the YSDP102 core indicate that coarse-grained sediments and fine-grained sediments result from different sources. The Yellow Sea Warm Current has greatly influenced the sedimentary framework of this region since the current‘s formation.  相似文献   

17.
Soil erosion and associated off-site sedimentation are threatening the sustainable use of the Three Gorges Dam.To initiate management intervention to reduce sediment yields,there is an increasing need for reliable information on soil erosion in the Three Gorges Reservoir Region(TGRR).The purpose of this study is to use 137 Cs tracing methods to construct a sediment budget for a small agricultural catchment in the TGRR.Cores were taken from a pond and from paddy fields,for 137 Cs measurements.The results show that the average sedimentation rate in the pond since 1963 is 1.50 g cm-2 yr-1 and the corresponding amount of sediment deposited is 1,553 t.The surface erosion rate for the sloping cultivated lands and the sedimentation rate in the paddy fields were estimated to be 3,770 t km-2 yr-1 and 2,600 t km-2 yr-1,respectively.Based on the estimated erosion and deposition rates,and the area of each unit,the post 1970 sediment budget for the catchment has been constructed.A sediment delivery ratio of 0.5 has been estimated for the past 42 years.The data indicate that the sloping cultivated lands are the primary sediment source areas,and that the paddy fields are deposition zones.The typical land use pattern(with the upper parts characterized by sloping cultivated land and the lower parts by paddy fields) plays an important role in reducing sediment yield from agricultural catchments in the TGRR.A 137 Cs profile for the sediment deposited in a pond is shown to provide an effective means of estimating the land surface erosion rate in the upstream catchment.  相似文献   

18.
Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in the Qinghai-Tibet Plateau is dominated by freeze-thaw erosion.In this research,freezing–thawing process of the soil samples collected from the Qinghai–Tibet Plateau was carried out by laboratory experiments to determinate the volume variation of soil as well as physical and mechanical properties, such as porosity, granularity and uniaxial compressive strength, after the soil experiences various freeze–thaw cycles.Results show that cohesion and uniaxial compressive strength decreased as the volume and porosity of the soil increased after experiencing various freeze–thaw cycles, especially in the first six freeze–thaw cycles.Consequently, the physical and mechanical properties of the soil were altered.However, granularity and internal friction angle did not vary significantly with an increase in the freeze–thaw cycle.The structural damage among soil particles due to frozen water expansion was the major cause of changes in soil mechanical behavior in the Qinghai–Tibet Plateau.  相似文献   

19.
Through the geochemical analysis of two hundred-meters cores KD4 and ZK3 from Laizhou Bay,in this study,we determined the distribution law and controlling factors of the geochemical elements.We analyzed 24 elements with respect to their R factors and major principal components,which were combined with the source discrimination functions DFCr/Th and DFCa/Al to obtain the sediment source index and its variation with depth for this area.A comparison of the changes in climate indicators suggests a clear correlation between the source and climate changes.The results show that the Yellow River and surrounding short-term rivers are the main sediment sources in this area.The PC3 of the KD4 core and PC2 of the ZK3 core(e.g.,CaO,MnO,SiO2)exhibit significant variations and reflect the relative contributions of Yellow River sources.The deposition process can be divided into six stages:in Phase I(MIS 5c–MIS 5a),the Yellow River formed,and the composition of the Yellow River had a greater influence on the sedimentary composition of the study area.In Phase II(MIS 5a–MIS 3),the sediment sources of the Yellow River and the short-term streams in this area were wavering,with the sediments derived from short-term rivers playing a more important role.In Phase III(MIS 3),with a sharp drop in temperature,the study area was in the process of retreat,and the sediment source changed from the Yellow River to short-term rivers,after which the Yellow River source material remained the main sediment source for the region.A similar process occurred three more times in Phase IV(MIS 3–MIS 2),Phase V(MIS 2–MIS 1),and Phase VI(MIS 1).With changes in climate,especially during alternating sea-land phases,the sediment source varied in marine-terrestrial-marine phases,and the changes are observed as Yellow River source-surrounding provenance-Yellow River source.However,this process of change is not synchronized with the sea-land strata alternation.  相似文献   

20.
Li  Chao  Yang  Shouye  Lian  Ergang  Bi  Lei  Zhang  Zhaofeng 《中国海洋大学学报(英文版)》2015,14(3):399-406
The East China Sea(ECS) is a river-dominated epicontinental sea, linking the Asian continent to the northwestern Pacific via the large rivers originating from Tibetan Plateau. The relevant huge influx of riverine detritus has developed unique sedimentary systems in the ECS during the Quaternary, offering ideal terrestrial archives for reconstructing Quaternary paleoenvironmental changes and studying land-sea interactions. Overall, two characteristic river systems dominate the sedimentary systems and sediment source to sink transport patterns in the ECS, represented by the Changjiang(Yangtze River) and Huanghe(Yellow River) for the large river system and Taiwan rivers for the small river system. Given this, the sediments derived from both river systems bear distinct features in terms of parent rock lithology, provenance weathering and sediment transport. Previous studies mostly focus on either the ‘source' discrimination or the ‘sink' records of the sedimentary system in the ECS, while the source to sink process linking the land and sea, in particular its time scale, has been poorly understood. Here we introduce a newly-developed dating technique, the ‘comminution age' method, which offers a quantitative constraint on the time scale of sediment transfer from its ultimate source to the final depositional sink. This novel method is of great significance for improving our understanding on the earth surface processes including tectonic-climate driven weathering, and sediment recycling in relation to landscape evolution and marine environmental changes. The application of comminution age method in the ECS will provide important constraints on sediment source-to-sink process and more evidences for the construction of late Quaternary paleoenvironmental changes under these unique sedimentary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号